期刊文献+

A machine learning approach for predicting human shortest path task performance

原文传递
导出
摘要 Finding a shortest path for a given pair of vertices in a graph drawing is one of the fundamental tasks for qualitative evaluation of graph drawings.In this paper,we present the first machine learning approach to predict human shortest path task performance,including accuracy,response time,and mental effort.To predict the shortest path task performance,we utilize correlated quality metrics and the ground truth data from the shortest path experiments.Specifically,we introduce path faithfulness metrics and show strong correlations with the shortest path task performance.Moreover,to mitigate the problem of insufficient ground truth training data,we use the transfer learning method to pre-train our deep model,exploiting the correlated quality metrics.Experimental results using the ground truth human shortest path experiment data show that our models can successfully predict the shortest path task performance.In particular,model MSP achieves an MSE(i.e.,test mean square error)of 0.7243(i.e.,data range from−17.27 to 1.81)for prediction.
出处 《Visual Informatics》 EI 2022年第2期50-61,共12页 可视信息学(英文)
基金 Research supported by ARC Linkage Project,Australia(LP160100935)with Oracle Research lab.
  • 相关文献

参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部