摘要
研究采用无人机搭载多光谱传感器采集遥感影像图,对采集到的影像进行光谱分析,可以发现不同类型的高原夏菜具有不同的光谱特征。课题组采用面向对象法对影像图上的高原夏菜进行分类,采用Kappa系数进行衡量,当系数大于0.9时,分类精度可达90%以上,与目视解译误差率在7.5%以内。因此,采用面向对象的分类方式处理遥感影像,可以对高原夏菜种植种类及面积统计进行智能化监测。
In this study,the remote sensing image map is collected by UAV equipped with multi spectral sensors,and the spectral analysis of the collected image can find that different types of plateau summer vegetables have different spectral characteristics.The research group adopts the object-oriented method to classify the plateau summer vegetables on the image map,and uses the Kappa coefficient to measure.When the coefficient is greater than 0.9,the classification accuracy can reach more than 90%,and the error rate with visual interpretation is within 7.5%.Therefore,using object-oriented classification to process remote sensing images can intelligently monitor the planting types and area statistics of summer vegetables on the plateau.
作者
刁鹏
苏军德
Diao peng;Su Junde(Gansu Vocational&Technical College of Nonferrous Metallurgy,Gansu Jinchang 737100)
基金
金昌市青年人才基金资助项目(2022JC00004)。
关键词
无人机
遥感
高原夏菜
面向对象分类
UAV
remote sensing
plateau summer vegetables
object oriented classification