期刊文献+

基于改进DenseNet的图像分类 被引量:1

下载PDF
导出
摘要 DenseNet是图像处理领域的一个经典模型,该模型通过在每一层进行通道连接实现了前后层之间的密切信息交流,其在图像分类相关领域展现出了优越的性能。本文对DenseNet模型进行修改,通过对模型中池化层的修改来防止建模过程中的下采样对网络平移不变性的破坏。同时在DenseNet模型的每一层引入非局部算子来完成对图像长程依赖的建模,从而提高图像分类精确度。本文在Cifar10数据集上对改进后的DenseNet模型进行了训练,实验结果表明池化层的修改和非局部算子的引入不仅使得模型的参数量下降,同时使得模型的图像分类准确率增加,提升了DenseNet模型的性能。
出处 《中国宽带》 2022年第8期64-66,共3页 China BroadBand
基金 大学生国家级创新创业项目(项目编号:S202010712054)。
  • 相关文献

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部