摘要
传统输电定价方法以年峰值负荷模型为基础,难以适应可再生能源大规模接入、电力市场深化改革的发展新形势,就此提出了一种新的基于相关性负荷模型的输电定价方法。采用多变量核密度估计和多维正态分布抽样技术,构建基于数据驱动的相关性负荷模型,抽样获得节点负荷向量样本空间,削弱了随机分布人为假设的不足,更好地模拟系统节点负荷相关性与随机变化规律。在此基础上形成系统负荷高峰时期多典型运行方式,采用源流分析法评估单运行方式的电网使用份额,用概率加权综合分摊输电成本,以制定公平的输电电价。采用IEEE RTS-79节点系统算例验证了该方法能够更加真实地综合反映输电用户对输电设备的使用份额,有利于实现公平定价,以适应绿色化和市场化的电力系统发展新格局。
The traditional transmission pricing method is based on the annual peak load model, which is difficult to adapt to the new development situation of the large-scale access of renewable energy and the deepening of the power market reform. Therefore, a new method based on the correlation load model is proposed. Using multi-variable kernel density estimation and multi-dimensional normal distribution sampling technology to build a data-driven correlation load model, sample the node load vector sample space, reduce the lack of random distribution artificial assumptions, and better simulate the system node load correlation according to the law of random change. On this basis, multiple typical operation modes are formed during the peak load period of the system, the source flow analysis method is used to evaluate the grid usage share of the single operation mode, and the transmission cost is comprehensively allocated with probability weighting to establish a fair transmission price. The IEEE RTS-79 node system calculation example verifies that this method can more truly and comprehensively reflect the use share of transmission equipment, which is conducive to achieving fair pricing and adapting to the new pattern of green and market-oriented power system development.
作者
黄海涛
况夫良
郑倪
HUANG Haitao;KUANG Fuliang;ZHENG Ni(School of Electric Power Engineering,Shanghai University of Electric Power,Shanghai 200090,China;Jiaxing Power Supply Company of State Grid Zhejiang Power Grid Co.,Ltd.,Jiaxing,Zhejiang 314033,China)
出处
《南方电网技术》
CSCD
北大核心
2022年第7期128-135,共8页
Southern Power System Technology
基金
国家自然科学基金资助项目(71203137)。
关键词
输电定价
相关性负荷
核密度估计
多维正态分布抽样
transmission pricing
correlation load
kernel density estimation
multi-dimensional normal distribution sampling