期刊文献+

基于机器学习的快速时序校准方法 被引量:2

Fast Time Calibration Method Based on Machine Learning
下载PDF
导出
摘要 针对布局布线工具和时序签核工具的时序分析差异,导致的迭代次数多、时序收敛困难的问题,提出一种基于机器学习的快速时序校准方法。首先,基于55 nm工艺,利用开源设计收集数据样本;然后,分别采用Lasso线性回归、BP神经网络、随机森林算法完成寄生参数预测模型的训练、测试及对比;最后,通过实验验证该方法的时序校准效果。实验结果表明,该方法可减少布局布线工具和时序签核工具间的时序分析差异。 A fast timing calibration method based on machine learning is proposed to solve the problems of multiple iterations and difficult timing convergence caused by the difference of timing analysis between the layout and routing tool and the timing signature tool.First,based on the 55 nm process,data samples were collected by open source design;Then,Lasso linear regression,BP neural network and random forest algorithm are respectively used to complete the training,testing and comparison of parasitic parameter prediction models;Finally,the timing calibration effect of this method is verified by experiments.The experimental results show that this method can reduce the time sequence analysis difference between the layout and routing tool and the time sequence signature tool.
作者 何柏声 詹瑞典 HE Baisheng;ZHAN Ruidian(School of Integrated Circuits,Guangdong University of Technology,Guangzhou 510006,China;ChipEyes Microelectronics Co.,Ltd.Foshan 528225,China)
出处 《自动化与信息工程》 2022年第4期32-35,47,共5页 Automation & Information Engineering
基金 广东省科技攻关计划项目(2019B010140002)。
关键词 芯片物理设计 静态时序分析 机器学习 寄生参数预测 时序校准 chip physical design static time sequence analysis machine learning parasitic parameter prediction timing calibration
  • 相关文献

参考文献2

二级参考文献10

共引文献6

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部