期刊文献+

基于人工蜂群优化循环神经网络的财务危机预测 被引量:1

Financial crisis prediction based on artificial bee colony optimized recurrent neural network
下载PDF
导出
摘要 为了提高财务危机预测的性能,采用循环神经网络(Recurrent neural network,RNN)对关键指标进行分析训练,以解决因为时间变化带来的深度学习网络预测准确率性能下降的问题。选取关键指标特征生成预测样本,并充分利用RNN在时间序列的循环计算优势,采用差异化时间序列的赋权策略,记忆不同历史时间序列对RNN预测分析的影响。经过RNN训练,并采用隐藏层输出不断循环的方式,将历史时间段输入不断作用于当前训练输出。引入人工蜂群(Artificial bee colony,ABC)算法在RNN反向传播过程中对时间序列权重进行更新。将RNN网络输出值与预测值的均方误差作为ABC的适用度函数,获得全局最优的ABC-RNN预测模型。试验证明,合理优化历史时间序列权重,能够获得较高的危机预测准确率。和常用预测算法对比,所提ABC-RNN算法的预测准确率更高,且曲线面积(Area under the curve,AUC)值更高。 In order to improve the performance of financial crisis prediction,the recurrent neural network(RNN)is used to analyze and train key indicators,so as to solve the problem that the prediction accuracy of deep learning network decreases due to time change.Firstly,select key index features to generate prediction samples,and make full use of the advantages of RNN in the cyclic calculation of time series,and adopt the weighting strategy of differentiated time series to remember the influence of different historical time series on RNN prediction analysis.Then,after RNN training,the historical time period input is continuously applied to the current training output by using the hidden layer output to continuously circulate.Secondly,artificial bee colony(ABC)algorithm is introduced to update the weight of time series in the process of RNN back propagation.The mean square error between the output value of RNN network and the predicted value is taken as the fitness function of ABC so as to obtain the globally optimal ABC-RNN prediction model.Experiments show that reasonably optimizing the weight of historical time series can obtain higher accuracy of crisis prediction.Compared with common prediction algorithms,the proposed ABC-RNN algorithm has higher prediction accuracy and higher value of area under curve(AUC).
作者 李珊珊 何栋炜 林丹楠 许萍 任艳 Li Shanshan;He Dongwei;Lin Dannan;Xu Ping;Ren Yan(School of Finance and Accounting;School of Information Engineering,Fujian Business University,Fuzhou 350012,China;School of Informatics,Xiamen University,Xiamen 361005,China;School of Economics and Management,Fuzhou University,Fuzhou 350003,China;Information Management Institute,Xinjiang University of Finance and Economics,Urumqi 830012,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2022年第4期427-433,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(72072033) 福建省社会科学规划项目(FJ2018C021) 福建省中青年教师教育科研项目(JAT210383) 新疆维吾尔自治区高校科研计划项目(XJEDU2019Y036)。
关键词 财务危机预测 循环神经网络 人工蜂群 时间序列 反向优化 financial crisis prediction recurrent neural network artificial bee colony time series reverse optimization
  • 相关文献

参考文献8

二级参考文献61

  • 1李春香,张为民,钟碧良.最小二乘支持向量机的参数优化算法研究[J].杭州电子科技大学学报(自然科学版),2010,30(4):213-216. 被引量:9
  • 2肖峻,王宇熹,陈伟忠.中国股市风格动量实证研究[J].财经科学,2006(3):23-29. 被引量:12
  • 3张鸣.企业财务预警前沿[M].北京:中国财政经济出版社,2004.
  • 4Ahman. ELI1, Financial Ratios Discriminant Analysis and the Prediction of Corporate Bankruptcy [J]. Journal of Finance, 1968, 23 (4) : 589 - 6091.
  • 5Johnson Craig G. Ratio Analysis and the Prediction of Finn Failure [J]. The Journal of Finance, 1970, 25 (5) : 1166 - 1168.
  • 6Ohlson, J1, Financial Ratios and the Probabilistic Prediction of Bankruptcy [ J]. Journal of Accounting Research, 1980, 18 ( 1 ) : 109 - 1301.
  • 7Elloumi F, Gueyie J P. Financial Distress and Corporate Governance: An Empirical analysis [ J]. Corporate Goemance, 2001 (5) : 15 -23.
  • 8Compbell J Y, Hilscher J, Szilagyi J. In Search of Distress Risk [ J]. The Journal of Finance, 2008, 63 (6) : 2899 - 2939.
  • 9E. Ostrom. Building Trust to Solve Comments Dilemmas : Taking Small Steps to Test an Evolving Theory of Collective Action [ M ]. New York : Springer, 2008 : 211 -216.
  • 10Viktor Mayer-Schonberger. Big Data: A Revolution That Will Transform How We Live, Work, and Think [ M]. 浙江人民出版社,2013.

共引文献130

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部