摘要
停电预测可以为电力公司的停电决策提供参考,改善资源分配并尽可能缩短恢复时间,也可以给群众一定的反应时间。因此,针对停电预测精度不高的问题,该文采用粒子群优化的支持向量机模型预测停电问题。在已有的天气特征基础上通过对最大温度和最小温度作差来增加温差特征;采用随机森林方法提取与停电问题关联度较大的特征;利用支持向量机模型训练停电数据,并使用基于线性递减权重的粒子群优化算法搜索相对更优的支持向量机参数;利用训练的预测模型预测停电数据。基于真实数据集试验,并与其它算法进行比较,结果表明该文的预测模型对于停电数据的预测具有更好的效果。
Power outage prediction can provide a reference for power companies’outage decision-making,improve resource allocation and possibly shorten recovery time.In addition,it can also give the masses a certain reaction time.Therefore,in view of the problem of low prediction accuracy of power outage,this paper uses the support vector machine optimized by particle swarm optimization algorithm to predict the power outage problem.Firstly,based on the existing weather characteristics,the difference between the maximum temperature and the minimum temperature is made to increase the temperature difference characteristics.Secondly,the random forest method is used to extract features which are more related to the power outage problem.Then,the support vector machine model is used to train the power outage data,and the particle swarm optimization algorithm based on linear decreasing weight is used to search for the optimal parameters of support vector machine.Finally,the trained prediction model is used to predict the outage data.Based on experiments on real data sets and comparison with other algorithms,the results show that the prediction model in this paper has a better effect on the prediction of power outage data.
作者
李淑锋
李加
张玉峰
王大鹏
袁培森
Li Shufeng;Li Jia;Zhang Yufeng;Wang Dapeng;Yuan Peisen(State Grid East Inner Mongolia Electric Power Co.,Ltd.,Hohhot 010010,China;State Grid Mengdong Electric Power Supply Service Supervision and Support Center,Tongliao 028000,China;College of Artificial Intelligence,Nanjing Agricultural University,Nanjing 210095,China)
出处
《南京理工大学学报》
CAS
CSCD
北大核心
2022年第4期460-466,共7页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(61502236,61806097)。
关键词
停电预测
随机森林
支持向量机
粒子群优化
线性递减权重
power outage prediction
random forest
support vector machine
particle swarm optimization
linear decreasing weight