摘要
Current in vitro models for osteosarcoma investigation and drug screening,including two-dimensional(2D)cell culture and tumour spheroids(i.e.cancer stem-like cells),lack extracellular matrix(ECM).Therefore,results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures.Here,we report a three-dimensional(3D)bioprinted osteosarcoma model(3DBPO)that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame.Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM.We performed multi-omics analysis,including transcriptomics and DNA methylomics,to determine differences between the 3DBPO model and traditional models.Compared with 2D models and tumour spheroids,our 3DBPO model showed significant changes in cell cycle,metabolism,adherens junctions,and other pathways associated with epigenetic regulation.The 3DBPO model was more sensitive to therapies targeted to the autophagy pathway.We showed that simulating ECM yielded different osteosarcoma cell metabolic characteristics and drug sensitivity in the 3DBPO model compared with classical models.We suggest 3D printed osteosarcoma models can be used in osteosarcoma fundamental and translational research,which may contribute to novel therapeutic strategy discovery.
基金
the Shanghai Science and Technology Development Fund(18DZ2291200)
the National Natural Science Foundation of China(92068205 and 81802679)
China Postdoctoral Science Foundation(2018M632136 and 2019T120348)to HL.The authors thank Shanghai Graphic Design Information Co.,Ltd.(Shanghai,China)for providing technical support and services for the 3D plotter(Envisiontec).The authors thank shiyanjia lab for the support of rheology,compression and AFM analysis.