摘要
针对LoRa网络节点定位过程中,接收信号强度指示(RSSI)采样值波动性大,指纹地图定位不精确的问题进行研究,提出了一种改进的指纹地图定位算法,即PSO-ANN-FMLA。首先,通过人工神经网络算法获得最佳RSSI值,利用粒子群算法优化人工神经网络算法的隐含层的神经元数量和学习速率;然后,指纹地图定位算法选择最佳RSSI采样值进行定位。最后,通过实验验证了本文算法的有效性,在室外300 m×300 m的无遮挡区域内,平均定位精度为6.21 m;与传统指纹地图定位算法相比,本文提出的算法平均定位精度提高了59.86%。
Aiming at the problem that large fluctuation of received signal strength indication(RSSI)sampling value sampled in accurate fingerprint map localization in LoRa process of network node localization.An improved fingerprint map localization algorithm is proposed, Firstly, the optimal RSSI values is obtained by artificial neural network(ANN) algorithm, in which the particle swarm algorithm optimizes the number of hidden layer neurons and learning rate of ANN algorithm, then fingerprint map localization algorithm uses the best RSSI value to localize.Finally, the effectiveness of this method is verified by experiment.The experimental results show that the positioning precision of the proposed algorithm is 6.21 m in the outdoor 300 m×300 m environment without occlusion.Compared with the traditional fingerprint map localization algorithm, the average positioning precision of the improved fingerprint map localization algorithm is 59.86 % higher.
作者
曹守启
王云腾垚
张铮
CAO Shouqi;WANG Yuntengyao;ZHANG Zheng(School of Engineering,Shanghai Ocean University,Shanghai 201306,China)
出处
《传感器与微系统》
CSCD
北大核心
2022年第9期46-49,共4页
Transducer and Microsystem Technologies
基金
国家重点研发计划资助项目(2019YFD0900800)。
关键词
LoRa网络
接收信号强度指示
定位
户外
指纹地图定位
LoRa network
received signal strength indication(RSSI)
localization
outdoor
fingerprint map localization