摘要
针对门控循环单元(GRU)神经网络进行电力负荷预测时,其超参数选取困难等问题,提出一种布谷鸟搜索(CS)算法和GRU相结合的预测方法。研究发现,GRU的预测精度与超参数的设定有关,通过CS算法寻优GRU的超参数,包括迭代次数、学习率和隐含层节点数,节省了超参数选取时间,进一步提高了GRU的预测精度。最后,以河南某地区实例数据为例,在Python的TensorFlow框架下验证了预测方法的有效性。
Aiming at the problem of difficulty of choosing hyper-parameters for gated recurrent unit neural network in power load fore-casting, a method of prediction is proposed by combining cuckoo search(CS)algorithm with gated recurrent unit(GRU)neural network.The study found that the accuracy of power load prediction is related to the setting of hyper-parameters.Cuckoo search algorithm is used to optimize the super parameters of GRU,including iteration times, learning rate and number of hidden layer nodes, which saves the time of hyper-parameter selection and further improves the prediction accuracy of GRU.Finally, taking a county in Henan Province as an example, the effectiveness of the prediction method is confirmed in the tensorflow framework of python.
作者
杨海柱
江昭阳
李梦龙
张鹏
YANG Haizhu;JIANG Zhaoyang;LI Menglong;ZHANG Peng(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454003,China;School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处
《传感器与微系统》
CSCD
北大核心
2022年第9期54-57,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61703144,51807133)。