期刊文献+

基于UWB的加权自适应卡尔曼滤波室内定位算法 被引量:6

UWB-based weighted adaptive Kalman filtering indoor positioning algorithm
下载PDF
导出
摘要 针对传统卡尔曼滤波(KF)定位算法在室内复杂环境下精确度低、抗干扰能力和稳定性差等问题,提出了一种基于超宽带(UWB)的加权自适应卡尔曼滤波(WKF)—到达时间差(TDOA)定位算法。首先,建立四锚UWB定位系统,引入无线时钟同步技术消除时钟误差;其次,对原始数据进行误差补偿,减少由人体反射和多径效应等影响因素引起的定位误差;然后,通过递归更新噪声协方差并动态调整权值以增强滤波器的稳定性;最终实现移动目标的动态实时定位。实验结果表明:所提算法可以减少由多径效应引起的定位误差,实现移动目标的动态实时高精度定位,与现有的其他定位方法相比,有效地提升了定位精度和鲁棒性。 Aiming at the problems of low accuracy, poor anti-interference ability, and poor stability of traditional indoor Kalman filter positioning algorithm in complex indoor environments, a weighted adaptive Kalman filtering(WKF)time difference of arrival(TDOA)positioning algorithm, based on ultra-wideband(UWB)is proposed.Firstly, establish a four-anchor ultra-bandwidth positioning system, introduce wireless clock synchronization technology to eliminate clock errors.Secondly, compensate the original data to reduce positioning error caused by human reflection and multipath effect and other influencing factors.Then, recursively update the noise covariance and dynamically adjust the weights to enhance the stability of the filter.Finally, dynamic real-time positioning of moving target is realized.The results show that WKF-TDOA can reduce positioning errors caused by multipath effect, and achieve dynamic real-time high-precision positioning of moving targets.Compared with other existing positioning methods, the experimental results show that this method has higher precision and better robustness.
作者 郝占军 安莹 陈红红 党小超 张金龙 HAO Zhanjun;AN Ying;CHEN Honghong;DANG Xiaochao;ZHANG Jinlong(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;Gansu Province Internet of Things Engineering Research Center,Lanzhou 730070,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第9期116-120,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61662070,61762079)。
关键词 超宽带 室内复杂定位 加权自适应卡尔曼滤波 误差补偿 到达时间差 ultra-wideband(UWB) indoor complex positioning weighted adaptive Kalman filtering(WKF) error compensation time difference of arrival(TDOA)
  • 相关文献

参考文献2

二级参考文献60

  • 1蒋文美,王玫.一种基于TOA的UWB直接-Taylor复合定位算法[J].桂林电子工业学院学报,2006,26(1):1-5. 被引量:9
  • 2张明华,张申生,曹健.无线局域网中基于信号强度的室内定位[J].计算机科学,2007,34(6):68-71. 被引量:66
  • 3杨峥,吴陈沭,刘云浩.位置计算:无线网络定位与可定位性[M].北京:清华大学出版社,2014:2-4,112,116.
  • 4Hazas M,Scott J,Krumm J.Location-aware computing comes of age [J].IEEE Computer Magazine,2004,37(2):95-97.
  • 5Yang Zheng,Wu Chen-shu,Liu Yun-hao.Location-based Computing:Localization and Localizability of Wireless Networks [M].Beijing:Tsinghua University Press,2014:111-128(in Chinese).
  • 6Want R,Hopper A,Falco V,et al.The Active Badge Location System [J].ACM Transactions on Information Systems,1992,0(1):91-102.
  • 7Harter A,Hopper A,Steggles P,et al.The Anatomy of a Context-Aware Application [J].Wireless Networks,2002,8(2):187-197.
  • 8Priyantha N B,Chakraborty A,Balakrishnan H.The CricketLocation-Support System[C]∥Proceedings of the 6th Annual International Conference on Mobile Computing and Networking.ACM,2000:32-43.
  • 9Ni L M,Liu Y,Lau Y C,et al.LANDMARC:Indoor Location Sensing Using Active RFID [J].Wireless Networks,2004,0(6):701-710.
  • 10Gown Y,Jain R.Error Characteristics and Calibration-free Tech-niques for Wireless LAN-based Location Estimation[C]∥Proceedings of the Second International Workshop on Mobility Management & Wireless Access Protocols.ACM,2004:2-9.

共引文献112

同被引文献65

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部