期刊文献+

BP神经网络在玉米干燥含水率预测中的研究 被引量:2

Study on Prediction of Corn Drying Moisture Content Based on BP Neural Network
下载PDF
导出
摘要 针对粮食干燥后含水率不一致这一问题,本研究根据农场测得实验数据为依据,采用入机初始含水率,烘干塔热风温度,入机玉米温度为输入量,排粮电机转速为输出量,构建BP神经网络玉米出机含水率预测模型。实验证明,通过与实际排粮电机转速作比较,该模型预测排粮电机转速误差在-5~5 r/min,预测值和实际值相关系数R为0.98419,证明该模型可以有效预测排粮电机转速和出机玉米含水率。 In view of the inconsistency of moisture content after grain drying, taking the continuous cross flow drying tower as the experimental object and based on the experimental data measured on the farm, the BP neural network prediction model of corn moisture content out of the machine is constructed. The initial moisture content of corn into the machine, the hot air temperature of drying tower, the temperature of corn into the machine are used as the input and the rotation speed of grain discharge motor is used as the output. Compared with the actual speed, the model can effectively predict the speed of grain discharge motor and the moisture content of corn.
作者 雷得超 付彦涛 金厚熙 李东洋 杨雨彤 句金 任守华 LEI Dechao;FU Yantao;JIN Houxi;LI Dongyang;YANG Yutong;JU Jin;REN Shouhua(College of Information and Electrical Engineering,Heilongjiang Bayi Agricultural University,163319 Daqing Heilongjiang,China)
出处 《粮食加工》 2022年第4期45-48,共4页 Grain Processing
关键词 排粮电机转速 BP神经网络 玉米烘干 含水率预测 speed of grain discharging motor BP neural network corn drying moisture content prediction
  • 相关文献

参考文献7

二级参考文献60

共引文献125

同被引文献45

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部