期刊文献+

Spherical quantum dot in modified Kratzer-Coulomb potential:study of optical rectification coefficients

原文传递
导出
摘要 We consider the effects of quantum dot radius,confinement potential depth and controllable effective mass on the optical rectification coefficient(ORC)in spherical quantum dots,which is confined with Modified Kratzer-Coulomb Potential(MKCP).Using the Nikiforov-Uvarov method and compact density matrix theory,the ground state energy,ORC and wave function of electrons under the combined action of many factors are calculated.The results show that they affect the optical rectification response from different angles,including the position of peak and formant.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第6期179-183,共5页 理论物理通讯(英文版)
基金 Project supported by Support National Natural Science Foundation of China(Grant Nos.52174161,12174161,51702003,61775087,and 11674312) the Natural Science Foundation of Anhui Province(No.1508085QF140) Plan Fund for Outstanding Young Talents in Colleges and Universities(No.gxyq ZD2018039)。
  • 相关文献

参考文献3

二级参考文献55

  • 1Zhang, W. C.; Li, Q.; Qiu, M. A plasmon ruler based on nanoscale photothermal effect. Opt. Express 2013, 21, 172-181.
  • 2Ting, L.; Tian, J. G.; Chen, Z. L.; Liang, Y.; Liu, J.; Liu, S.; Li, J. H.; Zhan, J. H.; Yang, X. S. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology 2014, 25, 345103.
  • 3Yim, J. Y.; Kim, H.; Ryu, S.; Song, S. W.; Kim, H. O.; Hyun, K.-A.; Jung, H.-I.; Joo, C. Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes. Biosens. Bioelectron. 2014, 57, 59-64.
  • 4Strzalkowski, K.; Zakrzewski, J.; Maliflski, M. Determination of the exciton binding energy using photothermal and photoluminescence spectroscopy. Int. J. Thermophys. 2013, 34, 691-700.
  • 5Wang, Z. Z.; Chen, Z. W.; Liu, Z.; Shi, P.; Dong, K.; Ju, E. G.; Ren, J. S.; Qu, X. G. A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014, 35, 9678-9688.
  • 6Byeon, J. H.; Kim, Y.-W. Au-TiO2 nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity. ACS Appl. Mater. Interfaces 2014, 6, 763-767.
  • 7Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. l.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811-817.
  • 8Chu, M. Q.; Pan, X. J.; Zhang, D.; Wu, Q.; Peng, J. L.; Hal, W. X. The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials 2012, 33, 7071-7083.
  • 9Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem. C 2009, 113, 12090-12094.
  • 10Dickerson, E. B.; Dreaden, E. C.; Huang, X. H.; EI-Sayed, I H.; Chu, H. H.; Pushpanketh, S.; McDonald, J. F.; E1-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269, 57-66.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部