期刊文献+

基于深度学习光流法的荧光油膜全局速度测量

Global velocity measurement of fluorescent oil film based on deep learning optical flow method
原文传递
导出
摘要 针对基于先验的传统光流法存在前提条件苛刻的问题,提出使用基于深度学习的光流法进行荧光油膜全局速度测量。采用数值仿真试验对基于先验的改进HS光流法和基于深度学习的FlowNet2光流法进行对比,结果显示:在不外加干扰时,改进HS光流法和FlowNet2光流法的平均端点误差分别为0.4587像素/s和0.3817像素/s;在亮度变化、噪声干扰或不同的演化时间下,FlowNet2光流法的平均端点误差均明显低于改进HS光流法,平均端点误差差值最大可达5.19像素/s;风洞试验进一步证明,FlowNet2光流法能够获得正确、清晰、定量的荧光油膜全局速度场,较改进HS光流法鲁棒性更高,对风洞工程应用具有一定的参考价值。 In order to solve the problems of the traditional optical flow method based on priori,such as harsh preconditions,an optical flow method based on deep learning was proposed to measure the global velocity of fluorescent oil film.The numerical simulation experiments were used to compare the improved HS optical flow method based on prior with FlowNet2 optical flow method based on deep learning.The results showed that the average endpoint errors of improved HS optical flow method and FlowNet2 optical flow method were 0.458 7 pixel/s and 0.381 7 pixel/s without external interference,respectively;the average endpoint error of FlowNet2 optical flow method was significantly lower than that of HS optical flow method under the conditions of brightness change,noise disturbance or different evolution times,and the maximum difference of average endpoint errors could reach 5.19 pixel/s.The experimental results in the wind tunnel further prove that the FlowNet2 optical flow method can obtain the correct,clear and quantitative global velocity fields of fluorescent oil film.With stronger robustness than the improved HS optical flow method,this method has certain reference value for wind tunnel engineering application.
作者 王超 董秀成 古世甫 张征宇 钱泓江 WANG Chao;DONG Xiucheng;GU Shifu;ZHANG Zhengyu;QIAN Hongjiang(School of Electrical Engineering and Electronic Information,Xihua University,Chengdu 610039,China;High Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang Sichuan 621000,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2022年第7期1539-1549,共11页 Journal of Aerospace Power
基金 国家自然科学基金(11872069) 四川省中央引导地方科技发展专项(2021ZYD0034)。
关键词 光流法 深度学习 荧光油膜 全局速度 鲁棒性 optical flow method deep learning fluorescent oil film global velocity robustness
  • 相关文献

参考文献11

二级参考文献101

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部