期刊文献+

WAVEFORM RELAXATION METHODS FOR LIE-GROUP EQUATIONS

原文传递
导出
摘要 In this paper,we derive and analyse waveform relaxation(WR)methods for solving differential equations evolving on a Lie-group.We present both continuous-time and discrete-time WR methods and study their convergence properties.In the discrete-time case,the novel methods are constructed by combining WR methods with Runge-KuttaMunthe-Kaas(RK-MK)methods.The obtained methods have both advantages of WR methods and RK-MK methods,which simplify the computation by decoupling strategy and preserve the numerical solution of Lie-group equations on a manifold.Three numerical experiments are given to illustrate the feasibility of the new WR methods.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2022年第4期649-666,共18页 计算数学(英文)
基金 supported by the Natural Science Foundation of China(NSFC)under grant 11871393 International Science and Technology Cooperation Program of Shaanxi Key Research&Development Plan under grant 2019KWZ-08.
  • 相关文献

参考文献3

二级参考文献18

  • 1Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L. The waveform relaxation method for timedomain analysis of large scale integrated circuits. IEEE Trans. Computer-Aided Design, 1(3): 131-145(1982)
  • 2Lumsdaine, A., Reichelt, M.W., Squyres, J.M., White, J.K. Accelerated waveform methods for parallel transient simulation of semiconductor devices. IEEE Trans. Computer-Aided Design, 15(7): 716-726(1996)
  • 3Miekkala, U., Nevanlinna, O. Convergence of dynamic iteration methods for initial value problems. SIAM J. Sci. Stat. Comput., 8(4): 459-482 (1987)
  • 4Sand, J., Burrage, K. A Jacobi waveform relaxation method for ODEs. SIAM .L Sci. Comput., 20(2):534-552 (1999)
  • 5Vandewalle, S., Piessens, R. Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations. SIAM J. Sci. Star. Comput., 13(6): 1330-1346 (1992)
  • 6Zhang, H.- A note on windowing for the waveform relaxation method. Applied Mathematics and Compuration, 76(1): 49-63 (1996)
  • 7Bjφrhus, M., Stuart, A.M. Waveform relaxation as a dynamical system.Mathematics of Computation,66(219): 1101-1117 (1997)
  • 8Gristede, G.D., Ruehli, A.E., Zukowski, C. A.Convergence properties of waveform relaxation circuit simulation methods. IEEE Trans. Circuits and Systems :Part Ⅰ, 45(7): 726-738 (1998)
  • 9Huang, Z.L., Chen, R.M.M., Jiang, Y.L. A parallel decoupling technique to accelerate convergence of relaxation solutions of integral-differential-algebraic equations. Journal of Interconnection Networks, 2(3):295-304 (2001)
  • 10Jiang, Y.L., Wing, O. Monotone waveform relaxation for systems of nonlinear differential-algebraic equations. SIAM J. Numer. Anal., 38(1): 170-185 (2000)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部