期刊文献+

Rational construction and decoration of Li_(5)Cr_(7)Ti_(6)O_(25)@Cnanofibers as stable lithium storage materials 被引量:4

下载PDF
导出
摘要 Li_(5)Cr_(7)Ti_(6)O_(25) is regarded as a promising anode material for Li-ion batteries(LIBs)because of its low cost and high theoretical capacity.However,the inherently poor conductivity significantly limits the enhancement of its rate capability and cycling stability,especially at high current densities.In this work,we construct one-dimensional Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers by electrospinning method to enhance the kinetic,which realizes high cycling stability.Carbon coating enhances the structure stability,insertion/extraction reversibility of Li-ions and electrochemical reaction activity,and facilitates the transfer of Li-ions.Benefited from the unique architecture and component,the Li_(5)Cr_(7)Ti_(6)O_(25)/C(6.6 wt%)nanofiber shows an excellent rate capability with a reversible de-lithiation capacity of 370.8,290.6,269.2,254.3 and 244.9 m Ah g^(-1) at 200,300,500,800 and 1000 m A g^(-1),respectively.Even at a higher current density of 1 A g^(-1),Li_(5)Cr_(7)Ti_(6)O_(25)/C(6.6 wt%)nanofiber shows high cycling stability with an initial de-lithiation capacity of 237.8 m Ah g^(-1) and a capacity retention rate of about 84%after 500 cycles.The density functional theory calculation result confirms that the introduction of carbon on the surface of Li_(5)Cr_(7)Ti_(6)O_(25) changes the total density of states of Li_(5)Cr_(7)Ti_(6)O_(25),and thus improves electronic conductivity of the composite,resulting in a good electrochemical performance of Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers.Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers indicate a great potential as an anode material for the next generation of high-performance LIBs.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期400-410,I0011,共12页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(U1960107) the“333”Talent Project of Hebei Province(A202005018) the Fundamental Research Funds for the Central Universities(N2123034 and N2123001) Hebei Key Laboratory of Dielectric and Electrolyte Functional Material,Northeastern University at Qinhuangdao(HKDEFM2021201)。
  • 相关文献

同被引文献28

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部