期刊文献+

0-X型磁电复合材料耦合效应研究进展

Research progress on coupling effect of 0-X type magnetoelectrical composites
下载PDF
导出
摘要 综述了国内外0-X型复合多铁性材料磁电耦合效应的研究进展。由磁性纳米微粒与铁电相复合而成的0-X型磁电复合多铁性材料具有更大的界面面积、更好的分散性以及因磁性相之间较差的连通性所带来的高阻特性等优点,理论上可获得室温下更强的磁电耦合效应。但是,0-X型磁电复合多铁性材料的磁电耦合效应不仅与铁电相和铁磁相本身有关,还依赖于两相的界面、尺寸、外延应变以及连接形式等因素,其中,磁电相之间的连接形式直接决定了复合材料中磁电相的分散性、界面面积及界面之间的作用力大小,进而影响磁电复合多铁性材料的磁电耦合性能。 Global research progress on magnetoelectric coupling effect of 0-X composite multiferroic materials is reviewed.The 0-X type magnetoelectric composite multiferroic material composed of magnetic nanoparticles and ferroelectric phase has the advantages of larger interface area, better dispersion and high resistance characteristics caused by poor connectivity between magnetic phases.Theoretically, a stronger magnetoelectric coupling effect at room temperature can be obtained.However, the magnetoelectric coupling effect of the 0-X type magnetoelectric composite multiferroic material is not only related to the ferroelectric phase and the ferromagnetic phase itself, but also depends on the factors such as the interface, size, epitaxial strain, and connection form between two phases.Among these factors, the connection form between the magnetoelectric phases directly determines the dispersion of the magnetoelectric phase in the composite material, the interface area and the force between the interfaces, and then affects the magnetoelectric coupling performance of the magnetoelectric composite multiferroic material.
作者 兰梦双 张钦 敖鸿 李汶川 邓小玲 高荣礼 LAN Meng-shuang;ZHANG Qin;AO Hong;LI Wen-chuan;DENG Xiao-ling;GAO Rong-li(School of Metallurgy and Materials Engineering,Chongqing University of Science&Technology,Chongqing 401331,China;Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices,Chongqing 401331,China)
出处 《现代化工》 CAS CSCD 北大核心 2022年第8期54-59,64,共7页 Modern Chemical Industry
基金 重庆市高校创新研究群体项目(CXQT19031) 重庆市留创计划创新类项目(cx2019159) 重庆市自然科学基金项目(cstc2020jcyj-msxmX0030) 重庆市自然科学基金重点项目(cstc2020jcyj-zdxmX0008) 重庆市教委科学技术项目(KJQN201801509) 重庆市教委科学技术研究重大项目(KJZD-M201901501) 重庆科技学院研究生科技创新项目(YKJCX2020523,YKJCX2020505)。
关键词 多铁性 0-X型复合材料 磁电耦合效应 连接方式 multiferroicity 0-X type composite material magnetoelectric coupling effect connective style
  • 相关文献

参考文献2

二级参考文献207

  • 1迟振华,靳常青.单相磁电多铁性体研究进展[J].物理学进展,2007,27(2):225-238. 被引量:29
  • 2Kimura T, Lashley J C, Ramirez A. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Pbys Rev B, 2006, 73:220401 (R).
  • 3Ye F, Fernandez-Baca A, Fishman R S, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett, 2007, 99:157201.
  • 4Lawes G, Kenzelamnn M, Rogada N, et al. Competing magnetic phases on a kagome staircase. Phys Rev Lett, 2004, 93:247201.
  • 5Lawes G, Harris A B, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett, 2005, 95:087205.
  • 6Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55- 58.
  • 7Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett, 2004, 92:257201.
  • 8Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys Rev B, 2005, 72: 100102(R).
  • 9Hemberger J, Schrettle F, Pimenov A, et al. Multiferroic phases of Eu1-xYxMnO3. Phys Rev B, 2006, 75:035118.
  • 10Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett, 2007, 98:147204.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部