期刊文献+

基于集成学习技术对死亡时间的研究 被引量:4

Research on the post mortem interval based on ensemble learning technology
原文传递
导出
摘要 目的 利用集成多种机器学习算法对死亡时间进行推断。方法 收集近5年来中国西部某地546起死亡案例的尸体数据,利用KNN、隔离森林和SMOTE(Synthetic Minority Oversampling Technique)超采样算法对数据进行整理填充,开发出一种将决策树、随机森林和logistic回归集成在一起的机器学习算法,基于博弈论的sharpley指数对模型中重要影响因子进行比较,优化参数,进而推断死亡时间。结果 通过集成方法,在数据从不完整到完整的过程中,将决策树、随机森林和logistic回归三种准确度在70%~80%的弱分类器集成为准确度在99%以上的强分类器,通过17例案例的实际应用,误差在4 h以内的案例达41.18%。结论 利用集成算法可以有效的将多种机器学习算法集成为推断死亡时间准确度更高的算法,基于此建立的死亡时间推断模型可以应用于死亡时间推断。 Objective To estimate the post mortem interval(PMI) by integrating multiple machine learning algorithms. Methods Cadaver data from 546 death cases that happened in a western China locality over the past five years were collected, and the data were sorted and filled by over-sampling Algorithm, such as KNN, Isolated Forest and Synthetic Minority Oversampling Technique(SMOTE). A machine learning algorithm that integrates decision tree, random forest and logistic regression was developed to compare the important influencing factors in the model based on the Sharpley index,optimize the parameters, and thus infer the PMI. Results Through the integration method, three sets of weak classifiers with 70 % ~ 80 % accuracy, including decision trees, random forests and logistic regression, were combined together and turned into strong classifiers with over 99 % accuracy, when the incomplete data became complete. 41.18 % of the cases with an error of less than 4 hours were achieved through the application of 17 cases in practical fields. Conclusion The use of integration algorithm can effectively combine multiple machine learning algorithms into one with higher accuracy for PMI estimation, and the inference model based on this can be applied to PMI estimation in practice.
作者 夏鹏 彭谨 刘振江 王小伟 王昊 常红发 杨里 孙广胜 李红卫 牛勇 Xia Peng;Peng Jin;Liu Zhengjiang;Wang Xiaowei;Wang Hao;Chang Hongfa;Yang Li;Sun Guangsheng;Li Hongwei;Niu Yong(Forensic science cene Chonging publicsecuriybureau,Chongqing 40000;Chongqing keylaboratoyofforensicmedical technologyon crime scene,Chongqing,400700;West China School of Basic Medical sciences and forensic medicine,Hwaseo Medical Center,Sichuan University,Sichuan 610041;Department ofCriminal Investigation,Ministryof Public Security PC.R.Beijing 100741)
出处 《中国法医学杂志》 CSCD 2022年第4期323-326,共4页 Chinese Journal of Forensic Medicine
基金 公安部技术研究计划项目“基于人工智能条件下的多维度人体死亡时间综合推断研究”(2018JSYJA15)。
关键词 法医病理学 死亡时间 集成学习 Forensic pathology Post mortem interval(PMI) Ensemble learning
  • 相关文献

参考文献3

二级参考文献13

  • 1Ohshima T,Sato Y.Time-dependent expression of inter-leukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality[J].Int J Legal Med,1998,111(5):251-255.
  • 2Trotter SA,Brill LB 2nd,Bennett JP Jr.Stability of gene expression in postmortem brain revealed by cDNA gene array analysis[J].Brain Res,2002,942 (1-2):120-123.
  • 3Guhaniyogi J,Brewer G.Regulation of mRNA stability in mammalian cells[J].Gene,2001,265(1-2):11 -23.
  • 4Tourrière H,Chebli K,Tazi J.mRNA degradation machines in eukaryotic cells[J].Biochimie,2002,84 (8):821 -837.
  • 5Inoue H,Kimura A.Tsutomu Tuji.Degradation profile of mRNA in a dead rat body:basic semi-quantification study[J].Forensic Sci Int,2002,130(2-3):127-132.
  • 6Bauer M,Gramlich I,Silke Patzelt D.Quantification of mRNAdegradation as possible indicator of postmortem interval-a pilot study[J].Legal Med (Tokyo).2003,5 (4):220-227.
  • 7Balciuniene J,Emilsson L,Oreland L,et al.Investigation of the functional effect of monoamine oxidase polymorphisms in human brain[J].Hum.Genet.2002,110:1-7.
  • 8Fitzmaurice PS,Bamsey CL,Ang L,et al.Brain aconitase activity is not decreased in progressive supranuclear palsy[J].Neurology,2002,59 (1):137-138.
  • 9Castensson A,Emilsson L,Preece P,et al.High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies[J].Genome Res.2002,10:1219-1229.
  • 10刘良,张力,刘亚玲,邓伟年,饶广勋,林乐泉,刘艳.大鼠脑细胞DNA含量与死亡时间关系的图像分析[J].中国法医学杂志,2000,15(1):1-3. 被引量:59

共引文献61

同被引文献58

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部