期刊文献+

Effects of thermophoresis on Brownian coagulation of spherical particles over the entire particle size regime

原文传递
导出
摘要 In many energy and combustion applications.particles experience large temperature gradients,which can affect the coagulation process due to thermophoresis.This study presents a rigorous theory of thermophoretically modified Brownian coagulation in the entire particle size regime.The theoretical derivations are based on the kinetictheory forthe free-molecular regime and the harmonic mean method for the transition regime.The coagulation kernels in different size regimes can be expressed as the basic Brownian coagulation kernel times an enhancement factor,The enhancement factor represents the coagulationrate enhancement induced by thermophoresis and is a function of specific dimensionless numbers.Based on the enhancement factor,the thermophoretic enhancement effects on particle coagulation are further analyzed under a wide range of gas and particle conditions.The results show that thermophoretic enhancement effects are ignorable in the free-molecular regime,but need to be considered in the continuum regime and the transition regime.In addition,the enhancement effects increase significantly with increase of gas temperature and temperature gradient while decrease with increase of gas pressure.The present study can improve understanding ofthermophoretic effects on Brownian coagulation in the entire size regime and provide a useful tool to calculate the coagulation rates in presence of thermophoresis.
出处 《Particuology》 SCIE EI CAS CSCD 2022年第8期8-17,共10页 颗粒学报(英文版)
基金 supported by the Science Challenge Project(grant No.TZ2016001) the Strategic Priority Research Program ofthe Chinese Academy of Sciences(grant No.XDB22040402) the National Natural Science Foundation of China(grant Nos.11525211 and U1530261).
  • 相关文献

参考文献1

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部