期刊文献+

Ru@ZrO_(2)/C-273催化剂的制备及其在锂氧电池中的电化学性能

Preparation and electrochemical properties of Ru@ZrO_(2)/C-273 catalyst for Li-O2 batteries
下载PDF
导出
摘要 为开发具有高能量密度的锂氧电池,以PS微球为模板,合成了Uio-66衍生的ZrO_(2)/C-273复合材料,负载Ru后得到Ru@ZrO_(2)/C-273正极材料,组装锂氧电池,并对其性能进行了测试。实验结果表明:Ru@ZrO_(2)/C-273锂氧电池可以有效提高锂氧电池的放电性能,当电流密度为100 mA/g时,具有7429 m Ah/g的放电比容量,高于Ru@ZrO_(2)/C锂氧电池的放电比容量(6164 mAh/g);随电流密度的不断增加,Ru@ZrO_(2)/C-273锂氧电池在200 mA/g和300 mA/g的电流密度下分别可以获得6598 m Ah/g和4533 mAh/g的放电比容量;在限制比容量为500 mAh/g的循环测试中,Ru@ZrO_(2)/C-273锂氧电池具有较好的稳定性,可以稳定循环45圈。 In order to develop Li-Obatteries with high energy density,the Uio-66 derived ZrO_(2)/C-273 composite was synthesized using polystyrene(PS)microspheres as a template.After loading Ru,Ru@ZrO_(2)/C-273 cathode material was obtained,and the Li-Obattery was assembled to test its performance.The experimental results showed that Ru@ZrO_(2)/C-273 lithium-oxygen batteries could effectively improve the discharge performance,when the current density was 100 m A/g,the specific discharge capacity was 7429 m Ah/g,which was higher than that of Ru@ZrO_(2)/C lithium-oxygen battery(6164 m Ah/g).With the increase of current density,Ru@ZrO_(2)/C-273 lithium-oxygen battery could obtain the discharge specific capacity of 6598 m Ah/g and 4533 m Ah/g at 200 m A/g and 300 m A/g,respectively.In the cycle test with a limited specific capacity of 500 m Ah/g,the Ru@ZrO_(2)/C-273 lithium-oxygen battery had a good stability and cycled for 45 stable cycles.
作者 阮艳莉 顾祥顺 王天宇 RUAN Yan-li;GU Xiang-shun;WANG Tian-yu(School of Chemical Engineering and Technology,Tiangong University,Tianjin 300387,China)
出处 《天津工业大学学报》 CAS 北大核心 2022年第4期43-48,共6页 Journal of Tiangong University
基金 国家自然科学基金资助项目(21403153)。
关键词 锂氧电池 氧电极 RU 聚苯乙烯 lithium-oxygen batteries oxygen electrode Ru polystyrene(PS)
  • 相关文献

参考文献1

二级参考文献102

  • 1吴宇平(WuYP),张汉平(ZhangHP),吴锋(WuF).绿色电池材料.北京:化学工业出版社,2008.1.
  • 2彭佳悦(PengJY),祖晨曦(ZuCX),李泓(LiH).储能科学与技术,2013,2(1):56.
  • 3Grande L, Paillard E, Hassoun J, Park J B, Lee Y J, Sun Y K Passerini S, Scrosati B. Adv. Mater. , 2015, 27(5) : 784.
  • 4Choi N S, Chen Z, Freunberger S, Ji X , Sun Y K, Amine K Yushin G, Nazar L F, Cho J, Bruce P G. Angew. Chem. Int Ed. , 2012, 51(40) : 9994.
  • 5Wen ZY, ShenC, LuY. Chem. Plus. Chem. , 2015, 80(2) 270.
  • 6Girishkumar G, McCloskey B, Luntz A C, Swanson W. J. Phys. Chem. Lett.,2010;l(14): 2193.
  • 7Lu J, Li L , Park J B, Sun Y K, Wu F, Amine Rev. , 2014 ,114(11):5611.
  • 8S, Wilcke K, Chem Shimonishi Y, Zhang T , Johnson P, Imanishi N, Hirano A Takeda Y, Yamamoto O, Sammes N. J. Power Sources, 2010 195(18): 6187.
  • 9WangY, Zhou H. J. Power Sources, 2010, 195(1): 358.
  • 10Luo W B, Chou S L, Wang J Z, Zhai Y C, Liu H K. Sci Rep. , 2015, 5: 8012.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部