期刊文献+

基于遗传算法的线路大型养路机械捣固作业单元区段选择模型 被引量:2

Selection Model of Tamping Operation Unit Section of Large Maintenance Machinery Based on Genetic Algorithm
下载PDF
导出
摘要 针对现有养护维修计划编制效率低下且相应模型编制复杂的问题,以维修单元内大型养路机械捣固作业计划编制最优化为原则,建立基于遗传算法的线路大型养路机械捣固作业单元区段选择模型。该模型以单元区段划分和多目标0-1整数规划方法为基础,以最大化养护维修作业量为目标,通过遗传算法搜索决策实现了养护维修作业的最优化。为验证该模型的计算效果,基于朔黄铁路的轨道高低不平顺检测数据进行计算,并与传统的枚举法进行对比。结果表明,在目标函数值近似的情况下,该选择模型计算效率约为传统枚举算法的200倍,能够有效减少养护维修计划的编制时间,提高养护维修计划自动编制的可行性。 In view of the low efficiency of the existing maintenance and repair plan preparation and the complexity of the corresponding model preparation,the section selection model of the tamping operation unit of the large maintenance machinery on the line based on genetic algorithm was established based on the principle of the optimization of the tamping operation plan preparation of the large maintenance machinery in the maintenance unit. The model is based on the division of unit sections and the multi-objective 0-1 integer programming method. With the goal of maximizing the maintenance work volume,the optimization of maintenance work was realized through genetic algorithm search decision.In order to verify the calculation effect of the model,the calculation was based on the track longitudinal irregularity detection data of Shuozhou-Huanghua railway and compared with the traditional enumeration method. The results show that the calculation efficiency of the selection model is about 200 times that of the traditional enumeration algorithm when the objective function value is approximate,which can effectively reduce the preparation time of maintenance and repair plan and improve the feasibility of automatic preparation of maintenance and repair plan.
作者 刘平 LIU Ping(Suning Branch,Guoneng Shuohuang Railway Development Co.Ltd.,Suning Hebei 062350,China)
出处 《铁道建筑》 北大核心 2022年第8期72-76,共5页 Railway Engineering
基金 国家能源投资集团有限责任公司科技创新项目(GJNY-20-231)。
关键词 有砟轨道 计划编制 遗传算法 大型养路机械 捣固 高低不平顺 单元区段 最优化 ballasted track plan preparation genetic algorithm large maintenance machinery tamping longitudinal irregularity unit section optimization
  • 相关文献

参考文献6

二级参考文献27

共引文献65

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部