期刊文献+

人工智能在乳腺影像中的应用研究进展 被引量:7

Advances in the Application of Artificial Intelligence in Breast Imaging
下载PDF
导出
摘要 乳腺癌是世界范围内女性最常见的恶性肿瘤,寻找影像学标志物用于该疾病的精准诊断、疗效评估和预后预测,可辅助临床制订个体化治疗方案。人工智能是当下医疗机构、科研领域、产业界和政府共同关注的焦点。它在医学影像中的应用包括两大技术:影像组学和深度学习。目前基于乳腺MRI、超声及X线的人工智能在实际临床问题和算法方面的研究越来越广泛和深入,本文就基于人工智能技术在乳腺影像中研究现状进行综述。 Breast cancer is the most common female malignant tumor worldwide.Finding imaging markers for accurate diagnosis,efficacy evaluation and prognosis prediction of this disease can assist clinical development of individualized treatment plans.Artificial intelligence is currently the focus of medical institutions,scientific research area,industry and government.Its application in medical imaging includes two technologies:radiomics and deep learning.At present,the artificial intelligence research on practical clinical problems and algorithms based on breast MRI,ultrasound and X-ray is more and more extensive and in-depth.This paper reviews the research status of artificial intelligence based on breast imaging.
作者 马文娟 刘梁生 张宇 尹蕊 郭一君 路红 MA Wenjuan;LIU Liangsheng;ZHANG Yu;YIN Rui;GUO Yijun;LU Hong(Department of Breast Imaging,Tianjin Medical University Cancer Institute and Hospital,National Clinical Research Center for Cancer,Key Laboratory of Cancer Prevention and Therapy,Tianjin,Tianjin’s Clinical Research Center for Cancer,Key Laboratory of Breast Cancer Prevention and Therapy,Tianjin Medical University,Ministry of Education,Tianjin 300060,China;School of Biomedical Engineering&Technology,Tianjin Medical University,Tianjin 300060,China)
出处 《中国医学计算机成像杂志》 CSCD 北大核心 2022年第4期439-442,共4页 Chinese Computed Medical Imaging
基金 国家自然科学基金(81801781,82072004)。
关键词 影像组学 深度学习 乳腺癌 Radiomics Deep learning Breast cancer
  • 相关文献

参考文献4

二级参考文献73

  • 1邵志敏,余科达.乳腺外科的发展趋势[J].中国普外基础与临床杂志,2007,14(3):252-254. 被引量:68
  • 2National Comprehensive Cancer Network. NCCN Clinical practice guidelines in oncology. Breast cancer. Version 2. 2015 [ EB/OL]. [ 2015-04-20 ]. http://www, nccn. org/ professionals/physician_gls/f_guidelines, asp#breast.
  • 3Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27 [ J]. J Clin Oncol, 2008, 26(5) : 778-785.
  • 4Untch M, Fasching PA, Konecny GE, et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups[J]. J Clin Oncol, 2011, 29(25) :3351-3357.
  • 5Sulpher J, Dent R, Dent S. Neoadjuvant chemotherapy in breast cancer: what questions remain? [ J]. Curr Opin Support Palliat Care, 2014, 8( 1 ) :59-63.
  • 6de Azambuja E, Holmes AP, Piccart-Gebhart M, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response [ J ]. Lancet Oncol, 2014, 15(10) :1137-1146.
  • 7Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [ J ]. Lancet, 2014, 384 (9938) :164-172.
  • 8Berruti A, Amoroso V, Gallo F, et al. Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: a meta- regression of 29 randomized prospective studies [ J ]. J Clin Oncol, 2014, 32(34) :3883-3891.
  • 9Sikov WM. Dual HER2-targeting without chemotherapy and estrogen deprivation in the neoadjnvant setting [ J ]. Gland Surg, 2014, 3(1) :81-84.
  • 10von Minckwitz G, Kiinrnel S, Vogel P, et al. Neoadjuvant vinorelbine- capecitabine versus docetaxel-doxorubicin-cyclophosphamide in early nonresponsive breast cancer: phase lU randomized GeparTrio trial [J]. J Natl Cancer lost, 2008, 100(8):542-551.

共引文献92

同被引文献40

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部