期刊文献+

基于神经网络的船体运动位姿预测方法 被引量:1

Deep learning for predicting ship motion from images,pitches and rolls
下载PDF
导出
摘要 海上运输在全球贸易中发挥着重要作用,依靠船舶自动驾驶系统的高速环境感知和自主决策能力,可有效减少由于人为操控失误造成事故的发生率。针对远洋航行中由于船体型号多变、海域情况复杂等造成的数据集缺失问题,本文提出一种通过物理引擎人工生成波浪图像与船体运动位姿数据集的方法。同时,针对波浪与船体运动姿态的时序性特点,以及经典循环神经网络面临梯度爆炸、输入输出等长等问题,提出一种基于CNN卷积神经网络和GRU门控循环神经网络的船体运动姿态预测模型,通过卷积神经网络获取图片特征,并借助Encoder-De-coder编码解码器结构,成功实现了以较短时间的数据对未来船体运动姿态(纵摇和横摇)的长时间和高精度预测。 Maritime transportation plays an important role in global trade.Relying on the high-speed environment perception capability of the ship’s automatic driving system,it can effectively reduce the incidence of accidents caused by human control errors.The changes of waves are the key factors affecting the movement of the vague.Aiming at the problem of missing data sets due to variable vague models and complex sea conditions during ocean voyages,this paper proposes a method of artificially generating wave images and vague motion pose data sets through a physics engine.At the same time,in view of the temporal characteristics of wave and ship motion posture,as well as the difficulties such as gradient explosion and equality of length of input and output,a vague motion posture prediction model based on CNN and GRU is proposed,with the help of Encoder-Decoder structure,which successfully realized the long-term and high-precision prediction of the future ship motion(pitch and roll)with a short time of data.
作者 谷达京 施哲源 陈根良 王皓 GU Da-jing;SHI Zhe-yuan;CHEN Gen-liang;WANG Hao(Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,Shanghai Jiaotong University,Shanghai 200240;Fraunhofer Project Center for Smart Manufacturing at Shanghai Jiaotong University,Shanghai 201306;Key Laboratory of Mechanical System and Vibration,Shanghai Jiaotong University,Shanghai 200240)
出处 《舰船科学技术》 北大核心 2022年第15期55-59,共5页 Ship Science and Technology
基金 国防基础科研项目(JCKY2018206B002)。
关键词 船舶自动驾驶 运动姿态 时序预测 CNN GRU autonomous ship navigation motion posture time Series prediction CNN GRU
  • 相关文献

参考文献3

二级参考文献16

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部