期刊文献+

利用排列小波熵评价脑电信号中的爆发抑制水平

Use of permutation wavelet entropy to evaluate EEG burst suppression
下载PDF
导出
摘要 为了评价脑电信号的爆发抑制水平,本文从非线性动力学的角度出发,通过计算脑电信号的排列熵,再计算排列熵的小波熵,得到一种新的参数排列小波熵(PEWE)于量化脑电信号的爆发抑制水平。结果表明,在4例数据的测试中,PEWE与双谱指数模块输出的爆发抑制比指数的相关系数达0.9425,因此,PEWE可以作为一种新参数来量化EEG信号的爆发抑制水平,为评价EEG信号的爆发抑制水平提供了新思路。 From the perspective of nonlinear dynamics,the permutation entropy of electroencephalogram(EEG)signal is calculated,and then the wavelet entropy of the obtained permutation entropyis calculated to obtain a new parameter,namely permutation wavelet entropy(PEWE),for quantifying the burst suppression level of EEG signal.The results show that in the test of 4 cases of data,the correlation coefficient between PEWE and SR index output by the BIS module is 0.9425,indicating that PEWE can be used as a measure to quantify the burst suppression level of EEG signal,which provides a new idea to evaluate EEG burst suppression.
作者 袁思念 但果 叶继伦 张旭 牛航舵 马胜才 李若薇 朱子孚 YUAN Sinian;DAN Guo;YE Jilun;ZHANG Xu;NIU Hangduo;MA Shengcai;LI Ruowei;ZHU Zifu(Department of Biomedical Engineering,School of Medicine,Shenzhen University,Shenzhen 518060,China;Shenzhen Key Laboratory for Biomedical Engineering,Shenzhen 518060,China;Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging,Shenzhen 518060,China)
出处 《中国医学物理学杂志》 CSCD 2022年第8期1010-1014,共5页 Chinese Journal of Medical Physics
基金 深圳市科创委重大产业攻关项目(JSGG20190222175027859,JSGG20210713091811038)。
关键词 脑电信号 爆发抑制水平 排列熵 小波熵 electroencephalogram burst suppression level permutation entropy wavelet entropy
  • 相关文献

参考文献2

二级参考文献40

  • 1Shannon CE. A mathematical theory of communication [J]. Bell System Techn J, 1948, 27(379-423): 623 - 656.
  • 2Johnson RW, Shore JE. Which is the better entropy expression for speech processing:-S log S or log S? [J]. IEEE Trans Acoust, 1984, ASSP-32: 129-137.
  • 3Muncaster AR, Sleigh JW, Williams M. Changes in conceptual memory and quantitative measures during recovery from sevoflurane and remifentanil-based anesthesia [J]. Anesth Analg, 2003, 96: 720-725.
  • 4Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy [J]. Am J hysiol Heart Circ Physiol, 2000, 278(6) : 121 - 128.
  • 5Bmhn J, Ropcke H, Hoeft A. Approximate entropy as an eleetroencephalographic measure of anesthetic drug effect during desflurane anesthesia [J]. Anesthesiology, 2000, 92(3): 715- 726.
  • 6Christoph B, Bernd P. Permutation entropy : a natural complexity measure for time series [J]. Physical Review Letters, 2002, 88 (17) : 174102 - 174101.
  • 7Vakkuri A, Yli-Hankala A, Talja P, et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol and thiopental anesthesia [J]. Acta Anaesthesiol Scand, 2004, 48:145 - 155.
  • 8Viertio-Oja H, Maja V, Sarkela M, et al. Description of the entropy algorithm as applied in the Datex-Ohraeda S/5 Entropy Module[J]. Acta Anaesthesiol Stand, 2004, 48: 154- 161.
  • 9Miller A, Sleigh JW,. Bamard J, et al. Does bispectral analysis of the electroencephalogram add anything but complexity? [J]. British Journal of Anaesthesia, 2004, 92( 1 ) : 8 - 13.
  • 10Croft RJ, Barry R. Removal of ocular artifact from the EEG: a Review [J]. Neurophysiol Clin, 2000, 30(1): 5- 19.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部