期刊文献+

基于支持向量机的制动意图识别方法 被引量:2

Recognition method of braking intention based on support vector machine
原文传递
导出
摘要 探索了一种采用实车试验数据,基于支持向量机(SVM)的制动意图识别方法。选取制动踏板位移、制动踏板力及制动减速度为制动意图识别参数,制动工况分为紧急制动、持续制动和常规制动;搭建制动意图识别整车测试系统,进行了多组制动工况试验,获取识别参数试验数据;构建了制动意图识别SVM模型,选取RBF核函数为SVM核函数,基于k折交叉验证法和网格搜索法对惩罚因子C与核函数参数σ进行了寻优;基于实际试验数据,选取持续制动、常规制动及紧急制动3种制动工况,对所构建的SVM模型进行了离线验证。结果表明:所构建的SVM模型具有较高的制动意图识别准确率,为后续的进一步应用提供了理论基础。 This paper focuses on a recognition method of braking intention based on the test data of real vehicle and the support vector machine(SVM). Brake pedal displacement,brake pedal force and braking deceleration were selected as the identification parameters of brake intention,and the braking conditions were divided into emergency braking,continuous braking and conventional braking. The vehicle test system of braking intention recognition was built,and several groups of brake tests were carried out to obtain the test data of identification parameters. The SVM model of brake intention recognition was constructed,and the RBF kernel function was selected as the SVM kernel function. Based on k-fold cross validation method and grid search method,the penalty factor C and kernel function parameter σ were optimized. Based on the actual test data,three braking conditions,gentle braking,conventional braking and emergency braking,were selected to verify the SVM model. The results show that the SVM model has high recognition accuracy of braking intention,which provides a theoretical basis for further application.
作者 王奎洋 何仁 WANG Kui-yang;HE Ren(School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China;School of Automotive and Traffic Engineering,Jiangsu University of Technology,Changzhou 213001,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第8期1770-1776,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51875258) 江苏省普通高校研究生科研创新计划项目(CXZZ13_0659)。
关键词 车辆工程 制动意图 支持向量机 特征参数 识别模型 vehicle engineering braking intention support vector machine feature parameters recognition model
  • 相关文献

参考文献8

二级参考文献73

  • 1宗长富,杨肖,王畅,张广才.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(S1):27-32. 被引量:26
  • 2张雨,任国峰,王爱国.基于符号序列Shannon熵提取机器的运行特征[J].中国机械工程,2006,17(15):1595-1599. 被引量:15
  • 3余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145. 被引量:23
  • 4Jeon S I, Jo S T, Park Y I, et al. Multimode driving control of a parallel hybrid electric vehicle using driving pattern recognition[J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 12(4): 141-149.
  • 5Schouten N J, Salman M A, Kheir N A. Energy management strategies for parallel hybrid vehicles u- sing fuzzy logic [C] // First IFAC-Conference on Mechatronie Systems, Darmstadt, Germany, 2000.
  • 6Cerruto E, Consoli A, Raciti A. Fuzzy logic based efficiency improvement of an urban electric vehicle [C]//IEEE 1994, Catania-Italy, 1994.
  • 7Schouten Niels J, Salman Mutasim A, Kheir Naim A. Energy management strategies for parallel hybrid vehicles using fuzzy logic[J]. Control Engineering Practice, 2003(11): 171-177.
  • 8Li J, Zhang J W, Yu F. An investigation into fuzzy controller for antilock braking system based on road autonomous identification[C]// SAE Paper, 2001-01 -0599.
  • 9Kim Chu Nho, Namgoong Eok, Lee Seongchul, et al. Fuel economy optimization for parallel hybrid ve- hicles with CVT[J]. Society of Automotive Engi- neers, 1999,48: 337-343.
  • 10王庆年,郑君峰,王伟华.一种新的并联混合动力客车的自适应控制策略[J].吉林大学学报(工学版),2008,38(2):249-253. 被引量:8

共引文献77

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部