期刊文献+

求解Laplace方程Cauchy问题的磨光化方法 被引量:1

A mollification method for solving Cauchy problem of Laplace equation
下载PDF
导出
摘要 考虑无限带状区域x∈R,0<y<1上Laplace方程的Cauchy问题,此问题是不适定的,因为解对输入数据不具有连续依赖性,即输入数据的小扰动可能会导致数值解与精确解有很大的误差。本文将用基于Gaussian核的磨光化方法来求解Laplace方程Cauchy问题,给出了其精确解与近似解之间的误差估计。数值实验表明了该方法的有效性。 This paper is concerned with a Cauchy problem for the Laplace equation in the strip region x∈R,0<y<1,where Cauchy data are given aty=0 and the equation is solved in interval 0<y<1.As we all know,this problem is ill-posed because the solution is no longer continuously dependent on the data.That is the small disturbance of the data which may lead to a large error between the numerical solution and the exact solution.In order to obtain a stable numerical solution,the equation is solved based on a mollification method used Gaussian kernel,and the error estimation between the exact solution and the approximate solution is given.Numerical examples show the effectiveness of the method.
作者 许涵 冯立新 XU Han;FENG Lixin(School of Mathematical Sciences,Heilongjiang University,Harbin 150080,China)
出处 《黑龙江大学自然科学学报》 CAS 2022年第4期379-387,共9页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11871198)。
关键词 磨光化方法 Laplace方程Cauchy问题 不适定问题 误差估计 mollification method Cauchy problem of Laplace equation ill-posed problem error estimate
  • 相关文献

参考文献8

二级参考文献34

  • 1周焕林,江伟,胡豪,牛忠荣.二维弹性力学边界条件反识别PCG正则化法[J].固体力学学报,2013,34(S1):288-293. 被引量:2
  • 2张耀明,吕和祥,王利民.位势平面问题的新的规则化边界积分方程[J].应用数学和力学,2006,27(9):1017-1022. 被引量:12
  • 3Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer-Verlag, 1996.
  • 4Qian Z, Fu C L, Xiong X T. Fourth-order modified method for the Cauchy problem for the Laplace equation[J]. Comput. Appl. Math. , 2006, 192: 205-218.
  • 5Qian Zhi, Fu Chu Li, Li Zhen Ping. Two regularization methods for a Cauehy problem for the Laplace equation[J]. J. Math. Anal. Appl. , 2008, 338: 479-489.
  • 6Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems[R]. Washington: Winston and Sons, 1997.
  • 7Berntsson F, Eld'en L. Numerical solution of a Cauchy problem of Laplaceequation[J]. Inverse Probl. , 2001,17: 839-853.
  • 8Xiong X T, Fu C L. Central difference regularization method for the Cauehy problem of the Laplace's equation[J]. Appl. Math. Comput. , 2006,181: 675-684.
  • 9H'ao D N. A mollification method for ill posed problems[J]. Numer. Math. ,1994,68: 469-506.
  • 10ANG D D,NGHIA N H,TAM N C.Regularized solutions of a cauchy problem for the Laplace equationin an irregular layer:A three-dimensional model[J].Acta Math Vietnam,1998,23(1):65-74.

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部