期刊文献+

基于Wi-Fi信道状态信息的人员身份合法性认证 被引量:1

LEGITIMACY IDENTITY VERIFICATION BASED ON WI-FI CHANNEL STATE INFORMATION
下载PDF
导出
摘要 针对传统人员身份合法性认证系统隐私性及舒适度问题,提出基于Wi-Fi信道状态信息(CSI)的人员身份合法认证系统,该系统将人员身份合法认证问题转化为相似度比较问题。对CSI信息进行降维和去噪;采用短时能量进行人员检测并获取行走的有效片段;提取离散小波变换(DWT)的近似系数作为特征;利用K-means算法找出每类合法人员数据的聚类中心点和距离半径,通过比较距离半径与未知人员数据到各个聚类中心点的距离进行人员身份合法性的判定。在真实的室内环境对该系统进行了评估,系统中合法人员为1到5人时,TPR和TNR可达到80%以上。实验表明,该系统能够有效地验证人员身份合法性。 Aiming at the privacy and comfort of the traditional legitimacy identity verification system,we propose legitimacy identity verification system based on Wi-Fi channel state information,which transfers the legitimacy identity verification problem to the similarity comparison problem.CSI information were reduced dimensionally and denoised.We used short-time energy to detect personnel and obtain effective segments of walking.Approximation coefficients of discrete wavelet transform(DWT)were extracted as features.We adopted K-means algorithm to find out the clustering center and distance radius of each class of legitimate personnel data.The identity legitimacy was determined by comparing the distance radius with the distance from unknown personnel data to each cluster center point.We evaluated the system in a real indoor environment.The result shows that TPR and TNR can reach more than 80%when there are 1-5 legal personnel in the system.The system can effectively verify the identity.
作者 魏忠诚 焦壮兴 张新秋 王巍 赵继军 Wei Zhongcheng;Jiao Zhuangxing;Zhang Xinqiu;Wang Wei;Zhao Jijun(School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,Hebei,China;Hebei Key Laboratory of Security&Protection Information Sensing and Processing,Hebei University of Engineering,Handan 056038,Hebei,China)
出处 《计算机应用与软件》 北大核心 2022年第8期312-319,共8页 Computer Applications and Software
基金 国家自然科学基金项目(61802107) 河北省自然科学基金项目(F2018402251)。
关键词 身份合法性认证 信道状态信息 正交频分复用 离散小波变换 K-MEANS算法 Legitimacy identity verification Channel state information Orthogonal frequency division multiplexing Discrete wavelet transform K-means algorithm
  • 相关文献

参考文献3

二级参考文献10

  • 1郎昕培,许可,赵明.基于无线局域网的位置定位技术研究和发展[J].计算机科学,2006,33(6):21-24. 被引量:24
  • 2Jose M Alonso,Manuel Ocana,Noelia Hernandez,et al.Enhanced WiF i localization system based on Soft Computing techniques to deal with small-scale variations in wireless sensors[J].Applied Soft Computing,2011(11):4677-4691.
  • 3Mu Zhou,Zengshan Tian,Kunjie Xu,et al.SCaN ME:Location tracking system in large-scale campus WiF i environment using unlabeled mobility map[J].Expert Systems with Applications,2014(41):3429-3443.
  • 4Yuanchen Zhu,Steven J Gortler,Dylan Thurston.Sensor network localization using sensor perturbation[J].ACM Transactions on Sensor Networks,2011,7(4):1-23.
  • 5Gracioli G,Frhlich A A.Evaluation of an RSSI-based Location Algorithm for Wireless Sensor Networks[J].IEEE Latin America Transactions,2011,9(1):830-835.
  • 6Zhang Rongbiao,Guo Jianguang,Chu Fuhuan,et al.Environmental-adaptive indoor radio path loss model for wireless sensor networks localization[J].AEU-International Journal of Electronics and Communications,2011,65(12):1023-1031.
  • 7Anvar Narzullaev,Yongwan Park,Kookyeol Yoo,et al.A fast and accurate calibration algorithm for real-time locating systems based on the received signal strength indication[J].International Journal of Electronics and Communications(AEü),2011(65):305-311.
  • 8Zhi Ren,Guangyu Wang,Qianbin Chen,et al.Modelling and simulation of Rayleigh fading,path loss,and shadowing fading for wireless mobile networks[J].Simulation Modelling Practice and Theory,2011(19):626-637.
  • 9任睿.基于数据库相关算法的位置指纹定位技术[J].铁道通信信号,2012,48(3):49-51. 被引量:2
  • 10陈空,宋春雷,陈家斌,杨黎明,尹静源.基于改进WKNN的位置指纹室内定位算法[J].导航定位与授时,2016,3(4):58-64. 被引量:17

共引文献55

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部