期刊文献+

基于FP-Growth算法的数控机床故障特征分析 被引量:2

Fault Feature Analysis for CNC Machine Tools Based on FP-Growth Algorithm
下载PDF
导出
摘要 数控机床故障问题的及时响应、故障原因精准判断以及解决方案的快速识别是实现制造单元智能化的关键。基于数控机床历史运维数据,采用关联规则挖掘FP-Growth算法实现数控机床故障模式、原因的关联规则挖掘。首先对运维数据进行故障特征分析,构建基于关联规则的故障诊断模型;其次,通过对历史故障模式及其相应故障原因进行挖掘,生成故障诊断关联规则;最后结合关联规则的支持度、置信度等评估指标进行分析,并推演出关联概率的大小,验证了FP-Growth算法用于数控机床故障特征分析的可行性和合理性。 The key to realize intelligent manufacturing cell is the timely response of CNC machine fault,accurate judgment of fault causes and rapid identification of solutions.Based on the historical operation and maintenance data of CNC machine tools,association rules mining FP-Growth algorithm was adopted,and association rules mining of fault modes and causes of CNC machine tools was realized.The fault characteristics of some historical operation and maintenance data were analyzed.A fault diagnosis model based on association rules was constructed.By mining the historical fault modes and corresponding fault causes,the specific fault diagnosis association rules were obtained.Finally,the feasibility and rationality of the FP-Growth algorithm for fault feature analysis of CNC machine tools were verified by analyzing the evaluation indexes such as support degree and confidence degree of association rules,and deducing the magnitude of association probability.
作者 曾夏 张富强 邵树军 杜超 ZENG Xia;ZHANG Fuqiang;SHAO Shujun;DU Chao(Key Laboratory of Road Construction Technology and Equipment of MOE,Chang'an University,Xi'an Shaanxi 710064,China;Institute of Smart Manufacturing Systems,Chang'an University,Xi'an Shaanxi 710064,China;Shaanxi Fast Gear Co.,Ltd.,Xi'an Shaanxi 710119,China)
出处 《机床与液压》 北大核心 2022年第16期174-180,共7页 Machine Tool & Hydraulics
基金 陕西省科技重大专项(2018zdzx01-01-01) 陕西省自然科学基金(2021JM-173) 中央高校项目(300102250201)。
关键词 数控机床 关联规则 故障特征分析 CNC machine tools Association rules Fault feature analysis
  • 相关文献

参考文献8

二级参考文献33

  • 1孙宇,彭强,张晓阳,陆宝春.基于混合结构树的故障诊断技术研究[J].计算机集成制造系统,2005,11(7):1030-1033. 被引量:6
  • 2田亮,常太华,曾德良,刘吉臻.基于典型样本数据融合方法的锅炉制粉系统故障诊断[J].热能动力工程,2005,20(2):163-166. 被引量:24
  • 3凌海风,郭坚毅,严骏,陈海松.案例推理技术用于故障诊断时的相似算法[J].解放军理工大学学报(自然科学版),2006,7(5):480-484. 被引量:11
  • 4何耀民,聂法宪.数控机床常见故障诊断与排除实例[J].煤矿机械,2007,28(2):183-185. 被引量:7
  • 5李凌均,张周锁,何正嘉.支持向量机在机械故障诊断中的应用研究[J],2002(19):19-21.
  • 6Bediaga I,Mendizabal X,Etxaniz I. An integrated system for machine tool spindle head ball bearing fault detection and diagnosis[J].{H}IEEE Transactions on Instrumentation and Measurement,2013,(02):42-47.
  • 7Jorge O,Estima,Antonio J,Marques Cardoso. A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors[J].{H}IEEE Transactions on Industrial Electronics,2013,(08):3496-3505.
  • 8Beatrice Lazzerini,Sara Lioba Volpi. Classifier ensembles to improve the robustness to noise of bearing fault diagnosis[J].Industrial and Commercial Application,2011,(02):235-251.
  • 9Caceres S,Henley E J. Process failure analysis by block diagrams and fault trees[J].{H}INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS,1976,(02):128-134.
  • 10Tsai Y T. Applying a case-based reasoning method for fault diagnosis during maintenance[J].Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science,2009,(10):2431-2441.doi:10.1243/09544062JMES1588.

共引文献46

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部