摘要
针对数控机床可靠性综合评价中指标选取不一、需要大量先验知识等不足,提出一种粗糙集与K-means聚类算法相结合的评价方法。建立原始评价指标体系,通过K-means聚类算法与Silhouetta指标对各指标值进行离散化处理,并运用粗糙集理论约简冗余指标,构造动态评价指标体系。根据属性重要度定义对约简后的指标客观赋权,构建粗糙集聚类可靠性综合评价模型。结果表明:所提出的方法合理、有效。
Aiming at the different index selection and requiring a large amount of prior knowledge in the comprehensive reliability evaluation of CNC machine tools,an evaluation method combining rough set with K-means clustering algorithm was proposed.The original evaluation index system was established,each index was discretized through the K-means clustering algorithm and Silhouetta index,and the rough set theory was used to reduce the redundant index,to construct a dynamic evaluation index system.According to the definition of attribute importance,objective weight was given to the reduced index,a comprehensive reliability evaluation model of rough set-clustering was constructed.The results show that the proposed method is reasonable and effective.
作者
全世豪
王德超
李冬阳
陈诗昊
朴成道
QUAN Shihao;WANG Dechao;LI Dongyang;CHEN Shihao;PIAO Chengdao(College of Engineering,Yanbian University,Yanji Jilin 133002,China)
出处
《机床与液压》
北大核心
2022年第16期200-204,共5页
Machine Tool & Hydraulics
基金
延边大学科技创新项目(602020025)
吉林省高教科研课题(JGJX2020D50)。
关键词
粗糙集
K-MEANS聚类
加工中心
可靠性综合评价
Rought set
K-means clustering
Processing center
Comprehensive reliability evaluation