期刊文献+

基于符号秩的高维均值检验 被引量:1

Signed-rank-based test for high dimensional mean vector
下载PDF
导出
摘要 研究高维情形下一样本均值检验的问题。已有的一些高维均值检验方法假设样本具有椭球等高分布。为应用到更多的分布,提出基于符号秩的均值检验统计量。所提方法是稳健的且具有刻度变换不变性。建立了所提出检验统计量的渐近性质,数值模拟表明该方法可以很好地控制第一类错误,且功效更高。还将该方法应用到眼科数据中。 This work is concerned with tests for one-sample mean vectors under high dimensional cases.Existing high dimensional tests for mean vectors base on the assumption of elliptical distribution have been proposed recently.To extend to more distributions,we propose a signed-rankbased test.The proposed test statistic is robust and scalar-invariant.Asymptotic properties of the test statistic are established.Numerical studies show that the proposed test has a good control of the type-I error and is more efficiency.We also employ the proposed method to analyze an ophthalmic data.
作者 刘琰 李仕明 张三国 LIU Yan;LI Shiming;ZHANG Sanguo(School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Big Data Mining and Knowledge Management,Chinese Academy of Sciences,Beijing 100049,China;Beijing Tongren Eye Center,Beijing Tongren Hospital,Capital Medical University,Beijing 100730,China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第5期586-592,共7页 Journal of University of Chinese Academy of Sciences
基金 Supported by Beijing Natural Science Foundation(Z190004,JQ20029) Key Program of Joint Funds of the National Natural Science Foundation of China(U19B2040) Capital Health Research and Development of Special(2020-2-1081)。
关键词 高维数据分析 符号秩 一样本检验 标度不变性 high dimensional analysis signed-rank one-sample test scalar-invariance
  • 相关文献

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部