期刊文献+

基于模糊逻辑和支持向量机的奶牛发情监测系统设计

Design of dairy cow estrus monitoring system based on fuzzy logic and support vector machine
下载PDF
导出
摘要 无接触式及时监测奶牛发情,发现最佳配种时期有助于奶牛繁殖,提高动物福利。在奶牛发情期其运动量增大,爬跨行为增多,利用几何特征能够直观地描述爬跨行为。针对明显的爬跨行为,根据最小外接矩形框计算多维几何特征,将其作为支持向量机行为识别的重要依据。当识别出爬跨行为后,依据含有爬跨行为的帧数计算爬跨时长,最终将产生爬跨行为的时间和爬跨时长作为模糊逻辑推理模型的输入,发情奶牛最佳配种时期作为其输出。实验结果表明,提出的方法可对实际的视频进行有效处理,对奶牛行为识别的平均准确率能达到97.5%,最佳配种时期与人工决策结果具有98.9%的匹配率,该发情监测系统能够实现管控一体化,为养殖人员提供可视化决策,有效提高奶牛繁殖性能。 The non-contact timely monitoring of the estrus of dairy cows can find out the best breeding period and help dairy cows reproduce and improve animal welfare.During the estrus of dairy cows,the amount of exercise and climbing behavior increase,and the geometric features can be used to intuitively describe the climbing behavior.Aiming at the obvious climbing behavior,the multi-dimensional geometric features are calculated according to the smallest external rectangular box,which are taken as an important basis for the behavior recognition by support vector machine(SVM).After the climbing behavior is identified,the climbing duration is calculated according to the number of frames containing the climbing behavior.The time when the climbing behavior occurs and the duration of the climbing behavior are used as the input of the fuzzy logic inference model,and the best mating period of the dairy cows in the estrus is used as the output.The experimental results show that the proposed method can effectively process the actual video,its recognition accuracy rate of the behavior of dairy cows can reach 97.5%,and its match rate between the optimal mating period and the manual decision result reaches 98.9%.The estrus monitoring system can realize the integration of management and control,provide visual decision-making for poultry feeders,and effectively improve the reproductive performance of dairy cows.
作者 刘天舒 房建东 LIU Tianshu;FANG Jiandong(Inner Mongolia University of Technology,Hohhot 010080,China;Inner Mongolia Key Laboratory of Perceptive Technology and Intelligent System,Inner Mongolia University of Technology,Hohhot 010080,China)
出处 《现代电子技术》 2022年第17期106-111,共6页 Modern Electronics Technique
基金 内蒙古自治区自然科学基金项目(2019MS06023) 内蒙古自治区科技攻关项目(2019GG334 2019GG337 2019GG376)。
关键词 奶牛发情监测 动物福利 爬跨行为 几何特征 行为识别 模糊逻辑推理 配种时期 dairy cow estrus monitoring animal welfare climbing behavior geometric feature behavior recognition fuzzy logic inference mating period
  • 相关文献

参考文献10

二级参考文献98

  • 1侯荩褒,石德顺,邓彦飞,赵宏涛.牛繁殖效率参数及应用[J].黑龙江动物繁殖,2020(5):44-50. 被引量:4
  • 2冀海峰,黄志尧,王保良,李海青.基于信息融合技术的气固流化床流型辨识[J].仪器仪表学报,2002,23(z2):897-899. 被引量:4
  • 3田海军,周云龙.电容层析成像技术研究进展[J].化工自动化及仪表,2012,39(11):1387-1392. 被引量:10
  • 4荆丰伟,刘冀伟,王淑盛.改进的K-均值算法在岩相识别中的应用[J].微计算机信息,2004,20(7):41-42. 被引量:5
  • 5宋克欧,黄凤岗,朱铁一.二值图像目标质心快速下降迭代搜索算法[J].模式识别与人工智能,1994,7(2):143-149. 被引量:8
  • 6Rebecca N Handcock,Dave L Swain,Greg J,et al.Monitoring animal behaviour and environmental interactions using wireless sensor networks,GPS collars and satellite remote sensing[J].Sensors,2009,9(5):3586-3603.
  • 7Watanabe T,Sakurai A,Kitazaki K.Dairy cattle monitoring using wireless acceleration-sensor networks[C]// Proceedings of IEEE Sensors,Lecce:[s.n.],2008:526-529.
  • 8Guo Y,Corke P,Poulton G,et al.Animal behaviour understanding using wireless sensor networks[C]//Local Computer Networks,Proceedings 2006 31st IEEE conference on,Tampa,FL,2006:607-614.
  • 9Nadimi E S,Sogaard H T,Bak T.ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees[J].Biosystems engineering,2008,100(2):167-176.
  • 10Wark T,Swain D,Crossman C,et al.Sensor and actuator networks:protecting environmentally sensitive areas[J].IEEE Pervasive Computing,2009,8(1):30-36.

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部