期刊文献+

基于RNN-LSTM新冠肺炎疫情下的微博舆情分析 被引量:6

Public Opinion Analysis on Weibo Based on RNN-LSTM in COVID-19
下载PDF
导出
摘要 目前微博已经成为网络舆论传播和挖掘民意的重要平台,为分析疫情事件对网民情绪的影响,科学高效地做好防控宣传和舆情引导工作,为此融合不同的深度学习方法对2020年初发生的新冠疫情的微博评论进行情感分析。提出一种基于RNN(Recursive Neural Network)和LSTM(Long Short-Term Memory)混合模型并在嵌入层中使用FastText词向量表示方法,以降低词向量中的噪声数据,从而获得语义丰富且噪声少的高质量词向量,并与朴素贝叶斯、支持向量机、RNN、LSTM多种情感分析方法进行比较。结果表明,所提出的情感分析模型正确率达到了98.71%,证明了该模型能有效提升情感分析正确率。 In recent years,microblog has become an important platform for Internet public opinion dissemination and public opinion mining.In order to analyze the impact of epidemic events on Netizens’emotions,we should do a good job in prevention and control publicity and public opinion guidance scientifically and efficiently.Therefore,we integrate different deep learning methods to conduct emotional analysis of microblog comments on the COVID-19 outbreak at the end of 2020.A hybrid model based on RNN(Recursive Neural Network)and LSTM(Long Short-Term Memory)and using the FastText word vector representation in the embedding layer is proposed to reduce the noise data in the word vectors and thus obtain high-quality word vectors with semantically rich and less noise.Training on Weibo corpora and compared with Bayesian and Support Vector Machine,RNN,LSTM multiple methods,the results show that the accuracy of the emotion analysis model proposed in this paper reaches 98.71%,which proves that the model can effectively improve the accuracy of emotion analysis.
作者 任伟建 刘圆圆 计妍 康朝海 REN Weijian;LIU Yuanyuan;JI Yan;KANG Chaohai(School of Electrical Information and Engineering,Daqing 163318,China;Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control,Daqing 163318,China)
出处 《吉林大学学报(信息科学版)》 CAS 2022年第4期581-588,共8页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61933007,61873058)。
关键词 情感分析 微博语料 FastText词向量 长短时记忆网络 emotional analysis weibo corpus FastText word vector long and short memory network
  • 相关文献

参考文献8

二级参考文献108

共引文献270

同被引文献39

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部