摘要
本文考虑独立同分布的随机环境中带移民的分枝过程(Z_(n)).基于(Z_(n))的结构,利用测度变换技巧,并借助随机游动的相关结果,我们得到关于logZ_(n)的Cramer型大偏差展式.
Let(Z_(n))be a supercritical branching process with immigration in an independent and identically distributed random environment.Based on the structure of Z_(n),using related results on random walks and technique of measure change,we establish a Cramer's large deviation expansion for log Z_(n).
作者
王艳清
刘全升
范协铨
Yan Qing WANG;Quan Sheng LIU;Xie Quan FAN(School of Statistics and Mathematics,Zhongnan University of Economics and Law,Wuhan 430073,P.R.China;LMBA,Universite de Bretagne-Sud,Campus de Tohannic,Vannes 56017,France;Center for Applied Mathematics,Tianjin 300072,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2022年第5期877-890,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(11731012)
中央高校基本科研业务费(2722021AJ014,2722021BX023)。