期刊文献+

基于YOLOv5s的高速公路车辆实时检测模型 被引量:8

Real-time detection model of highway vehicle based on YOLOv5s
下载PDF
导出
摘要 针对高速复杂环境下YOLOv5s算法细节特征学习能力弱、冗余信息过多、关键特征融合不足导致车辆目标检测精度低的问题,本文提出一种基于YOLOv5s的高速公路车辆实时检测模型(YOLOv5s-CRCP)。首先,在残差单元中嵌入卷积注意力模块,强化学习细节特征,抑制冗余信息干扰;然后,将卷积注意力融入金字塔网络中用以区分不同重要信息,加强关键特征融合。在构建的宁夏高速公路车辆数据集上进行实验,平均检测精度达到91.2%,高出原算法4.1%。实验结果表明,相较于YOLOv5s和主流实时车辆目标检测算法,本文方法具有更好的检测性能。 Aiming at the problems that the YOLOv5s algorithm has weak detailed feature learning ability,excessive redundant information,and insufficient key feature fusion in complex highway environments leads to low accuracy of vehicle target detection,a real-time detection model of highway vehicle is proposed based on YOLOv5s(YOLOv5s-CRCP).Firstly,convolutional attention module is embeded in the residual unit to strengthen the learning of detailed features and suppress the interference of redundant information.Secondly,convolutional attention is integrated into pyramid network to distinguish different important information and strengthen the fusion of key features.Experiments are conducted on the constructed Ningxia highway vehicle data set,and the average detection accuracy reaches to 91.2%,which is 4.1%higher than that of original algorithm.Experimental results show that the proposed method has better detection performance in comparison with YOLOv5s and the mainstream real-time vehicle target detection algorithms.
作者 刘元峰 姬海军 刘立波 LIU Yuan-feng;JI Hai-jun;LIU Li-bo(School of Information Engineering,Ningxia University,Yinchuan 750021,China;Ningxia Road Network Monitoring and Emergency Response Center,Yinchuan 750021,China)
出处 《液晶与显示》 CAS CSCD 北大核心 2022年第9期1228-1241,共14页 Chinese Journal of Liquid Crystals and Displays
基金 宁夏重点研发计划(No.2021BEG03024)。
关键词 注意力机制 YOLOv5s 车辆目标检测 智能交通 神经网络 attention YOLOv5s vehicle target detection intelligent transportation neural networks
  • 相关文献

参考文献5

二级参考文献28

共引文献79

同被引文献52

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部