摘要
针对信息化条件下联合作战产生的海量、多源、复杂的战场数据,提出一种Hadoop分布式数据处理平台。收集海量数据进行战场态势(battlefieldsituation,BS)要素分析,用粒子群算法(particleswarmoptimization,PSO)优化极限学习机(extremelearningmachines,ELM)的方法对战场态势历史数据进行训练,构建战场态势预测模型;并采用Matlab2018对战场态势进行模拟仿真。仿真结果表明:Hadoop处理海量战场数据效率更高,可有效提高战场态势的预测精度,为辅助指挥员快速掌握复杂战场态势提供新的方法和途径。
Aiming at the massive,multi-source and complex battlefield data produced by joint operations under the condition of informationization,a Hadoop distributed data processing plat form is proposed.Massive data are collected to analyze the elements of battle field situation(BS),and the particle swarm optimization(PSO)is used to optimize the extreme learning machines(ELM).The method of ELM is used to train the historical data o f battlefield situation and construct the prediction model of battlefield situation,and Matlab 2018 is used to simulate the battlefield situation.The simulation results show that Hadoop is more efficient in processing massive battlefield data,and can ef fectively improve the prediction accuracy of battlefield situation,which provides a new method and way for assisting commanders to quickly grasp the complex battlefield situation.
作者
王秀娟
曹瑾
王建强
韩文华
Wang Xiujuan;Cao Jin;Wang Jianqiang;Han Wenhua(Department of Basic,Logistics University of People’s Armed Police Force,Tianjin 300309,China;Military Work Laboratory,Construction and Development Research Institute,Research Academy of PAP,Beijing 100020,China)
出处
《兵工自动化》
2022年第9期60-64,92,共6页
Ordnance Industry Automation
基金
武警后勤学院基础研究项目(WHJ202101)。
关键词
联合作战
战场态势
粒子群
极限学习机
joint operation
battlefield situation
particle swarm optimizati on
extreme learning machine