期刊文献+

基于大数据分析技术的战场态势分析及预测 被引量:7

Battlefield Situation Analysis and Prediction Based on Big Data Analysis Technology
下载PDF
导出
摘要 针对信息化条件下联合作战产生的海量、多源、复杂的战场数据,提出一种Hadoop分布式数据处理平台。收集海量数据进行战场态势(battlefieldsituation,BS)要素分析,用粒子群算法(particleswarmoptimization,PSO)优化极限学习机(extremelearningmachines,ELM)的方法对战场态势历史数据进行训练,构建战场态势预测模型;并采用Matlab2018对战场态势进行模拟仿真。仿真结果表明:Hadoop处理海量战场数据效率更高,可有效提高战场态势的预测精度,为辅助指挥员快速掌握复杂战场态势提供新的方法和途径。 Aiming at the massive,multi-source and complex battlefield data produced by joint operations under the condition of informationization,a Hadoop distributed data processing plat form is proposed.Massive data are collected to analyze the elements of battle field situation(BS),and the particle swarm optimization(PSO)is used to optimize the extreme learning machines(ELM).The method of ELM is used to train the historical data o f battlefield situation and construct the prediction model of battlefield situation,and Matlab 2018 is used to simulate the battlefield situation.The simulation results show that Hadoop is more efficient in processing massive battlefield data,and can ef fectively improve the prediction accuracy of battlefield situation,which provides a new method and way for assisting commanders to quickly grasp the complex battlefield situation.
作者 王秀娟 曹瑾 王建强 韩文华 Wang Xiujuan;Cao Jin;Wang Jianqiang;Han Wenhua(Department of Basic,Logistics University of People’s Armed Police Force,Tianjin 300309,China;Military Work Laboratory,Construction and Development Research Institute,Research Academy of PAP,Beijing 100020,China)
出处 《兵工自动化》 2022年第9期60-64,92,共6页 Ordnance Industry Automation
基金 武警后勤学院基础研究项目(WHJ202101)。
关键词 联合作战 战场态势 粒子群 极限学习机 joint operation battlefield situation particle swarm optimizati on extreme learning machine
  • 相关文献

参考文献7

二级参考文献62

  • 1刘广军,丁哲峰,罗小明.基于主成分分析的防空导弹武器综合评价[J].战术导弹技术,2010(5):12-15. 被引量:4
  • 2赵宗贵.信息融合技术现状、概念与结构模型[J].中国电子科学研究院学报,2006,1(4):305-312. 被引量:42
  • 3唐雪松,郭立红,陈长喜.基于案例推理方法在态势分析中的应用研究[J].计算机测量与控制,2006,14(12):1723-1725. 被引量:7
  • 4ENDSLEY MR. Design and Evaluation for Situational Awareness Enhancement [ C ]//Proceeding of the Human Factors Society 32nd Annual Meeting, Santa Monica:HFES. 1988:97-101.
  • 5ENDSLEY M R. Toward a Theory of Situation Awareness in Dynamic System [ J ]. Hum Factors, 1995,37 ( 1 ) : 32- 64.
  • 6ENDSLEY M R. SMOLENSKY M W. Situation Awareness in Air Traffic Control : The Picture [ M ]//SMOLENSKY M W, STEIN E S. Human Factors in Air Traffic Control. Academic Press, San Diego, 1998 : 115-150.
  • 7WHITE F E. Joint Directors of Laboratories-Technical Panel for C3 Data Fusion Sub-panel [ R ]. Naval Ocean Systems Center, San Diego, 1987.
  • 8EDWARD WALTZ, JAMES LLINAS. Muhisensor Multitarget Data Fusion [ M ]. Boston : Artech House, 1990.
  • 9王琳,寇英信.Dempster-Shafer证据理论在空战态势评估方面的应用[J].电光与控制,2007,14(6):155-157. 被引量:23
  • 10FANG L, WANG C L, MA G Q. A framework for network security situation awareness based on knowledge discovery [ C]//Proceedings of the 2010 2nd International Confer- ence on Computer Engineerinand Technology, Piscataway: IEEE, 2010 : 226 -231.

共引文献114

同被引文献46

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部