期刊文献+

边坡岩土体抗剪强度的逆向迭代修正反演方法 被引量:6

Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering
下载PDF
导出
摘要 针对已滑动或有明显变形的边坡,取定稳定系数值进行反演分析是确定岩土体抗剪强度的重要手段。当边坡滑动面穿越多层岩土体时,盲目地抗剪强度试算反演明显不合理。为解决此问题,构造以多层岩土体抗剪强度为输入,以GeoSlope计算得到的稳定系数、滑面剪入口和剪出口位置为输出的BP神经网络,基于取定的稳定系数和现场测定的滑动面剪入口和剪出口位置,通过重复执行“逆向反推-误差校验-样本修正”实现岩土体抗剪强度的逆向迭代修正反演。工程实例验证结果表明,该方法获取的岩土体抗剪强度基本合理,可供小型边坡防护工程设计参考。该方法成功地规避了BP神经网络以已知信息为输入、以待反演参数为输出的传统做法在解决该问题时为欠定的局限性,对样本库样本数量的要求降低且具有较好精度。 For slopes that has failed or deformed significantly,the shear strength of rock and soil mass is frequently inversely estimated based on a factor of safety assumed.For the slope with a sliding surface passing through multi-layer rock and soil mass,it is unreasonable to achieve this goal by trial and error.To solve this issue,back propagation(BP)neural network is constructed using shear strength of multi-layer rock and soil mass as the input and the factor of safety of the slope,and the entry and exit positions of the sliding surface obtained by GeoSlope as the outputs.Then,based on the assumed factor of safety and the entry and exit positions measured in site,the shear strength is acquired by carrying out the“reverse back analysis-error check-sample correction”procedure repeatedly.The result of a case study verifies that the shear strength obtained by this method is reasonable and can be used as a reference when designing prevention measures for small-scale slopes.BP neural network usually considers the known information as the input,and the information to be determined as the output,which will induce a mathematical underdetermined problem when solving this issue.The proposed method avoids this demerit successfully,and has a lower requirement on the number of samples in the library and a higher precision compared to the classical BP neural network.
作者 江巍 欧阳晔 闫金洲 王志俭 刘立鹏 JIANG Wei;OUYANG Ye;YAN Jin-zhou;WANG Zhi-jian;LIU Li-peng(Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education,China Three Gorges University,Yichang,Hubei 443002,China;College of Civil Engineering and Architecture,China Three Gorges University,Yichang,Hubei 443002,China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100038,China)
出处 《岩土力学》 EI CAS CSCD 北大核心 2022年第8期2287-2295,共9页 Rock and Soil Mechanics
基金 国家自然科学基金(No.52079070) 流域水循环模拟与调控国家重点实验室开放基金(No.IWHR-SKL-202020) 三峡库区地质灾害教育部重点实验室开放基金(No.2020KDZ10)。
关键词 边坡防护 神经网络 参数反演 逆向迭代 欠定问题 slope prevention neural network parameter inversion reverse iteration underdetermined problems
  • 相关文献

参考文献16

二级参考文献141

共引文献459

同被引文献122

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部