期刊文献+

一种融合项目信息与信任机制的协同过滤算法 被引量:2

A collaborative filtering algorithm combining project in-formation and trust mechanism
下载PDF
导出
摘要 针对现有方法未能考虑用户社会地位和信任对象的差异及用户相似性在面对不同项目时不能自适应变化的问题,提出一种融合项目信息与信任机制的协同过滤算法CF-PIC。首先,将项目按照所属领域进行划分,综合考虑用户在不同领域内的全局信任度和局部信任度,构建特定领域的信任网络;然后,将项目间相似性融入Pearson相关系数,计算用户面对不同项目时的偏好程度,以更加精确地捕获其近邻信息;最后,对目标用户进行TOP-N推荐。在真实数据集Epinions上的大量实验表明,该算法的推荐性能相较于经典的协同过滤算法和融入单一信息的算法有了大幅提高。 The existing methods fail to take into account the differences in the user's social status and trust objects,and the problem that the user's similarity cannot adapt to changes in the face of different projects.To address the issues,a collaborative filtering algorithm combining project information and trust mechanism(CF-PIC)is proposed.Firstly,items are divided according to their fields.Trust network of the specific field is built by considering the global trust and local trust of users in different fields.Then,in order to capture the neighbor information more accurately,the similarity be⁃tween items is integrated into Pearson correlation coefficient to calculate the degree of user's preference when facing dif⁃ferent items.Finally,TOP-N recommendation is made to the target user.Experimental results using the Epinions dataset show that the performance of the proposed algorithm is greatly improved,compared to the classical collaborative filtering algorithm and the algorithm incorporating single information.
作者 尹天贺 牛存良 张养硕 YIN Tianhe;NIU Cunliang;ZHANG Yangshuo(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
出处 《河北工业大学学报》 CAS 2022年第4期39-45,共7页 Journal of Hebei University of Technology
基金 天津市自然科学基金(19JCZDJC40000)。
关键词 推荐系统 协同过滤 用户信任 项目领域 项目相似度 recommendation system collaborative filtering user trust project areas item similarity
  • 相关文献

参考文献8

二级参考文献64

  • 1Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 2Su X Y,Khoshgoftaar T M.A survey of collaborative filtering techniques.Advances in Artificial Intelligence,2009,2009:1-20.
  • 3Mobasher B,Burke R,Bhaumik R,Sandvig J J.Attacks and remedies in collaborative recommendation.IEEE Intelligent Systems,2007,22(3):56-63.
  • 4Lam S K,Riedl J.Shilling recommender systems for fun and profit.In:Proceedings of the 13th International Conference on World Wide Web.New York,USA:ACM,2004.393-402.
  • 5O'Mahony M P,Hurley N J,Kushmerick N,Silvestre G C M.Collaborative recommendation:a robustness analysis.ACM Transactions on Internet Technology,2004,4(4):344-377.
  • 6Huang Z,Chen H,Zeng D.Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering.ACM Transactions on Information Systems,2004,22(1):116-142.
  • 7Mobasher B,Burke R D,Bhaumik R,Williams C.Toward trustworthy recommender systems:an analysis of attack models and algorithm robustness.ACM Transactions on Internet Technology,2007,7(4):1-40.
  • 8Burke R,Mobasher B,Williams C,Bhaumik R.Classification features for attack detection in collaborative recommender systems.In:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia,Pennsylvania,USA:ACM,2006.542-547.
  • 9Zhang S,Ouyang Y,Ford J,Makedon F.Analysis of a low-dimensional linear model under recommendation attacks.In:Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Seattle,Washington,USA:ACM,2006.517-524.
  • 10Mehta B,Nejdl W.Unsupervised strategies for shilling detection and robust collaborative filtering.User Modeling and User-Adapted Interaction,2009,19(1-2):65-97.

共引文献160

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部