摘要
The previously developed LB-DF/FD method derived from the lattice Boltzmann method and Direct Forcing/Fictitious Domain method is extended to deal with 3D particle’s Brownian motion.In the model the thermal fluctuations are introduced as random forces and torques acting on the Brownian particle.The hydrodynamic interaction is introduced by directly resolving the fluid motions.A sphere fluctuating in a cubic box with the periodic boundary is considered to validate the present model.By examining the velocity autocorrelation function(VCF)and rotational velocity autocorrelation function(RVCF),it has been found that in addition to the two relaxation times,the mass density ratio should be taken into consideration to check the accuracy and effectiveness of the present model.Furthermore,the fluctuation-dissipation theorem and equipartition theorem have been investigated for a single spherical particle.Finally,a Brownian particle trapped in a harmonic potential has been simulated to further demonstrate the ability of the LB-DF/FD model.
基金
supported by the Major Program of the National Natural Science Foundation of China with Grant No.10632070。