期刊文献+

Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems 被引量:2

原文传递
导出
摘要 The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems.The preservation of the qualitative characteristics,such as the maximum principle,in discrete model is one of the key requirements.It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D.In this paper we consider how to enforce discrete maximum principle for linear finite element solutions for the linear second-order self-adjoint elliptic equation.First approach is based on repair technique,which is a posteriori correction of the discrete solution.Second method is based on constrained optimization.Numerical tests that include anisotropic cases demonstrate how our method works for problems for which the standard finite element methods produce numerical solutions that violate the discrete maximum principle.
出处 《Communications in Computational Physics》 SCIE 2008年第4期852-877,共26页 计算物理通讯(英文)
基金 the National Nuclear Security Administration of the U.S.Department of Energy at Los Alamos National Laboratory under Contract No.DE-AC52-06NA25396 the DOE Office of Science Advanced Scientific Computing Research(ASCR)Program in Applied Mathematics Research.The first author has been supported in part by the Czech Ministry of Education projects MSM 6840770022 and LC06052(Necas Center for Mathematical Modeling).
  • 相关文献

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部