摘要
An efficient p-multigrid method is developed to solve the algebraic systems which result from the approximation of elliptic problems with the so-called FeketeGauss Spectral Element Method,which makes use of the Fekete points of the triangle as interpolation points and of the Gauss points as quadrature points.A multigrid strategy is defined by comparison of different prolongation/restriction operators and coarse grid algebraic systems.The efficiency and robustness of the approach,with respect to the type of boundary condition and to the structured/unstructured nature of the mesh,are highlighted through numerical examples.