期刊文献+

Efficient Implicit Non-linear LU-SGS Approach for Compressible Flow Computation Using High-Order Spectral Difference Method 被引量:2

原文传递
导出
摘要 An implicit non-linear lower-upper symmetric Gauss-Seidel(LU-SGS)solution algorithm has been developed for a high-order spectral difference Navier-Stokes solver on unstructured hexahedral grids.The non-linear LU-SGS solver is preconditioned by a block element matrix,and the system of equations is then solved with the LU decomposition approach.The large sparse Jacobian matrix is computed numerically,resulting in extremely simple operations for arbitrarily complex residual operators.Several inviscid and viscous test cases were performed to evaluate the performance.The implicit solver has shown speedup of 1 to 2 orders of magnitude over the multi-stage Runge-Kutta time integration scheme.
出处 《Communications in Computational Physics》 SCIE 2009年第2期760-778,共19页 计算物理通讯(英文)
基金 The study was partially funded by Rockwell Scientific/DARPA contract W911NF-04-C-0102,AFOSR grant FA9550-06-1-0146,and DOE grant DE-FG02-05ER25677 The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,either expressed or im-plied,of DARPA,AFOSR,DOE,or the U.S.Government.
  • 相关文献

同被引文献14

  • 1Coekburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[J]. Mathematics of Computation, 1989,52: 411-435.
  • 2Wang Z J. Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation [J]. Journal of Computational Physics, 2002,178: 210-251.
  • 3Liu Y, Vinokur M, Wang Z J. Discontinuous spectral difference method for conservation laws on unstructured grids[J]. Journal of Computational Physics, 2006,216: 780-801.
  • 4Huynh H To A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[-R3. AIAA Paper, 2007,4079.
  • 5Kopriva D A, Kolias J H. A conservative staggered-grid Chebyshev multi-domain method for compressible flows[J]. Journal of Computational Physics, 1996,125(1) : 244-261.
  • 6Wang Z J, Liu J, May G, et al. Spectral difference method for unstructured grids II: Extension to the Euler equations[J]. Journal of Scientific Computing, 2007, 32: 45-71.
  • 7May G, Jameson A. A spectral difference method for the Euler and Navier-Stokes equations on unstructured meshes[R]. AIAA Paper, 2006, 304.
  • 8Liang C, Kannan R, Wang Z J. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids[J]. Computers and Fluids, 2009,38(2): 254-265.
  • 9Steger J L, Dougherty F C, Benek J A. A chimera grid scheme[M]. New York: ASME Publications, 1983 : 59-69.
  • 10Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981,43: 357-372.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部