期刊文献+

Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes 被引量:6

原文传递
导出
摘要 We extend the weighted essentially non-oscillatory(WENO)schemes on two dimensional triangular meshes developed in[7]to three dimensions,and construct a third order finite volume WENO scheme on three dimensional tetrahedral meshes.We use the Lax-Friedrichs monotone flux as building blocks,third order reconstructions made from combinations of linear polynomials which are constructed on diversified small stencils of a tetrahedral mesh,and non-linear weights using smoothness indicators based on the derivatives of these linear polynomials.Numerical examples are given to demonstrate stability and accuracy of the scheme.
出处 《Communications in Computational Physics》 SCIE 2009年第2期836-848,共13页 计算物理通讯(英文)
基金 The research of the second author is supported by NSF grants AST-0506734 and DMS-0510345.
  • 相关文献

同被引文献168

  • 1Jun Zhu,Chi-Wang Shu.Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: a Numerical Study[J].Communications on Applied Mathematics and Computation,2020,2(3):429-460. 被引量:2
  • 2ZHU Jun,QIU JianXian.A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes[J].Science China Mathematics,2008,51(8):1549-1560. 被引量:7
  • 3Zhengfu Xu,Chi-Wang Shu.ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT[J].Journal of Computational Mathematics,2006,24(3):239-251. 被引量:2
  • 4Minion M L. Semi-implicit spectral deferred correction methods for ordinary differential equations [ J]. Communications in Mathematical Sciences, 2003, 1: 471- 500.
  • 5Xia Y, Xu Y, Shu C-W. Efficient time discretization for local discontinuous Galerkin methods [J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 8: 677- 693.
  • 6Strang G. On the construction and comparison of difference schemes [J]. SIAM Journal on Numerical Analysis, 1968, 5: 506- 517.
  • 7Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes,Ⅱ[ J]. Journal of Computational Physics, 1989, 83: 32- 78.
  • 8Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126: 202- 228.
  • 9Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[ M]//Cockbum B, Johnson C, Shu C-W, Tadmor E (Editor: A Quarteroni), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, volume 1697, Springer, 1998: 325- 432.
  • 10Roe P. Approximate Riemann solvers, parameter vectors and difference schemes [ J ]. Journal of Computational Physics, 1978, 27 : 1 -31.

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部