期刊文献+

Numerical Simulations of Rarefied Gases in Curved Channels: Thermal Creep, Circulating Flow, and Pumping Effect 被引量:1

原文传递
导出
摘要 We present numerical simulations of a new system of micro-pump based on the thermal creep effect described by the kinetic theory of gases.This device is made of a simple smooth and curved channel with a periodic temperature distribution.Using the Boltzmann-BGK model as the governing equation for the gas flow,we develop a numerical method based on a deterministic finite volume scheme,implicit in time,with an implicit treatment of the boundary conditions.This method is comparatively less sensitive to the slow flow velocity than the usual Direct Simulation Monte Carlo method in case of long devices,and turns out to be accurate enough to compute macroscopic quantities like the pressure field in the channel.Our simulations show the ability of the device to produce a one-way flow that has a pumping effect.
出处 《Communications in Computational Physics》 SCIE 2009年第10期919-954,共36页 计算物理通讯(英文)
基金 This research was supported partially by“Projet International de Cooperation Scientifique(PICS)”of CNRS(Grant No.3195) by grants-in-aid for scientific research from JSPS(Nos.17656033 and 20360046).
  • 相关文献

同被引文献21

  • 1WOMAC D J, INCROPERA F P, RAMADHYANI S. Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets[J]. ASME Jornal of Heat Transfer, 1994, 116(2): 482-486.
  • 2DARABI J, WANG H. Development of an e1ectrohydrodynamic injection micropump and its potential application in pumping fluids in cryogenic cooling systems[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 747-755.
  • 3AMON C H, MURTHYJ Y, YAO S C. MEMS enabled thermal management of high heat flux devices EDIFICE: embedded droplet impingement for integrated cooling of electronics[J]. Experimental Thermal and Fluid Science, 2001, 25(5): 231-242.
  • 4COLIN S. Rarefaction and compressibility effects on steady and transient gas flows in microchannels[J]. Microfluidics and Nanofluidics, 2005,1(3): 268-279.
  • 5SONE Y,SATO K. Demonstration of a one-way flow of a rarefied gas induced through a pipe without average pressure and temperature gradients[J]. Physics of Fluids, 2000, 12(7): 1864- 1868.
  • 6MCNAMARA S. On-chip vacuum generated by a micromachined knudsen pump[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 741-746.
  • 7VARGO S E, MUNTZ E P, SHIFLETT G R, et al. Knudsen compressor as a micro and macroscale vacuum pump without moving parts or fluids[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999, 17(4): 2 308-2 313.
  • 8ALEXEENKO A A, GIMELSHEIN S F, MUNTZ E P. Kinetic modeling of temperature driven flows in short microchannels[J]. International Journal of Thermal Sciences, 2006, 45(11): 1 045- I 051.
  • 9ALEXEENKO A A, FEDOSOV D A, GIMELSHEIN S F, et al. Transient heat transfer and gas flow in a MEMS-based thruster[J]. Journal of Micro electromechanical Systems, 2006,15(1): 181-194.
  • 10GUPTA N K, YOGESH B G. A planar cascading architecture for a ceramic Knudsen micropump[C]//Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009, Denver, USA, June 21-25, 2009: 2298-2301.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部