期刊文献+

Numerical Investigation on the Boundary Conditions for the Multiscale Base Functions 被引量:1

原文传递
导出
摘要 We study the multiscale finite element method for solving multiscale elliptic problems with highly oscillating coefficients,which is designed to accurately capture the large scale behaviors of the solution without resolving the small scale characters.The key idea is to construct the multiscale base functions in the local partial differential equation with proper boundary conditions.The boundary conditions are chosen to extract more accurate boundary information in the local problem.We consider periodic and non-periodic coefficients with linear and oscillatory boundary conditions for the base functions.Numerical examples will be provided to demonstrate the effectiveness of the proposed multiscale finite element method.
出处 《Communications in Computational Physics》 SCIE 2009年第5期928-941,共14页 计算物理通讯(英文)
  • 相关文献

同被引文献12

  • 1Roos H G, Stynes M, Tobiska L. Numerical methods for singularly perturbed differential equations [ M ]. Berlin : The Springer Press, 1996.
  • 2Zienkiewiez O C,Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement [ J ]. Computer Methods in Applied Mechanics and Engineering, 1992,101 ( 1-3 ) :207-224.
  • 3Araya R, Valentin F. A muhiscale a posteriori error estimate [ J ]. Computer Methods in Appliod Mechanics and Englneering,2005,194 ( 18 -20) : 2077 -2094.
  • 4Stynes M, O' Riordan E. A uniformly convergent Galerkin method on a Shishkin mesh for convection-diffusion problem [ J ]. Journal of Mathematical Analysis and Applications, 1997,214 ( 1 ) : 36-54.
  • 5LinB T, Stynes M. The SDFEM on Shishkin meshes for linear convection-diffusion problems[J]. Numerische Mathematik, 2001,87 ( 3 ) :457-484.
  • 6Zienkiewicz O C. The background of error estimation and adaptivity in finite element computations [ J ]. Computer Methods in Applied Mechanics and Engineering,2006,195 (4-6 ) :207-213.
  • 7Babuska I, Osbom E. Generalized finite element methods:their perfonnance and their relation to mixed methods [ J ]. SIAM Journal on Numerical Analysis, 1983,20:510-535.
  • 8Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [ J ]. SIAM Journal on Numerical Analysis, 1994,31 (4) : 945 -981.
  • 9Hou T Y,Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [ J ]. Journal of Computational Physics, 1997,134 ( 1 ) : 168-189.
  • 10Hou T Y, Wu X H, Cai Z. Convergence of a muhiscale finite element method for elliptic problems with rapidly oscillating coefficients [ J ]. Mathematical Computation, 1999,68 ( 227 ) :913-943.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部