期刊文献+

The Recursive Formulation of Particular Solutions for Some Elliptic PDEs with Polynomial Source Functions

原文传递
导出
摘要 In this paper we develop an efficient meshless method for solving inhomogeneous elliptic partial differential equations.We first approximate the source function by Chebyshev polynomials.We then focus on how to find a polynomial particular solution when the source function is a polynomial.Through the principle of the method of undetermined coefficients and a proper arrangement of the terms for the polynomial particular solution to be determined,the coefficients of the particular solution satisfy a triangular system of linear algebraic equations.Explicit recursive formulas for the coefficients of the particular solutions are derived for different types of elliptic PDEs.The method is further incorporated into the method of fundamental solutions for solving inhomogeneous elliptic PDEs.Numerical results show that our approach is efficient and accurate.
出处 《Communications in Computational Physics》 SCIE 2009年第5期942-958,共17页 计算物理通讯(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部