期刊文献+

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

原文传递
导出
摘要 In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemistry.We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint.Matched asymptotic approximations for the problem are presented to locate the positions and characterize the widths of boundary layers and/or interior layers in the solution.A uniformly convergent numerical method is proposed by using the normalized gradient flow and piecewise uniform mesh techniques based on the asymptotic approximations for the problem.Extensive numerical results are reported to demonstrate the effectiveness of our numerical method for the problems.Finally,the method is applied to compute ground and excited states of Bose-Einstein condensation in the semiclassical regime and some conclusive findings are reported.
出处 《Communications in Computational Physics》 SCIE 2008年第6期135-160,共26页 计算物理通讯(英文)
基金 Singapore Ministry of Education grant No.R-146-000-083-112 and would like to thank Professor Tao Tang for very helpful discussion on the subject.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部