期刊文献+

Wave Propagation Across Acoustic/Biot’s Media:A Finite-Difference Method

原文传递
导出
摘要 Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid/poroelastic media.Wave propagation is described by the usual acoustics equations(in the fluid medium)and by the low-frequency Biot’s equations(in the porous medium).Interface conditions are introduced to model various hydraulic contacts between the two media:open pores,sealed pores,and imperfect pores.Well-posedness of the initial-boundary value problem is proven.Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context:a fourth-order ADER scheme with Strang splitting for timemarching;a space-time mesh-refinement to capture the slow compressional wave predicted by Biot’s theory;and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution.Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions,demonstrating the accuracy of the approach.
出处 《Communications in Computational Physics》 SCIE 2013年第4期985-1012,共28页 计算物理通讯(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部