期刊文献+

生成对抗网络在医学图像转换领域的应用 被引量:2

Applications of Generative Adversarial Networks in Medical Image Translation
下载PDF
导出
摘要 近年来,生成对抗网络(Generative Adversarial Network,GAN)以其独特的对抗训练机制引起广泛的关注,应用场景也逐渐延伸到医学图像领域,先后出现了众多优秀的研究成果.本文首先介绍了GAN的理论背景及衍生出的典型变体,特别是多种用于医学图像转换领域的基础GAN模型.随后从多种不同的目标任务和训练方式出发,对前人的研究成果进行了归纳总结,并对优缺点进行了分析.最后就目前GAN在医学图像转换领域存在的不足以及未来的发展方向进行了细致讨论. In recent years,the generative adversarial network(GAN)has attracted widespread attention with its unique adversarial training mechanism.Its applications have gradually extended to the field of medical imaging,and much excellent research has emerged.This paper reviews the research progress of the popular application for GAN in medical image translation.It starts with an introduction to the basic concepts of GAN and its typical variants,emphasizing on several GANs related to medical image translation.Then,the recent progress is summarized and analyzed from the perspectives of different target tasks and training modes.Finally,the remaining challenges of GAN in medical image translation and the directions of future development are discussed.
作者 常晓 蔡昕 杨光 聂生东 CHANG Xiao;CAI Xin;YANG Guang;NIE Sheng-dong(Institute of Medical Imaging Engineering,University of Shanghai for Science and Technology,Shanghai 200082,China;School of Physics and Electronic Science,East China Normal University,Shanghai 200062,China)
出处 《波谱学杂志》 CAS 北大核心 2022年第3期366-380,共15页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(81830052) 上海市分子影像重点实验室资助项目(18DZ2260400).
关键词 生成对抗网络(GAN) 医学影像 图像转换 多模态 深度学习 generative adversarial network(GAN) medical image image translation multimodal deep learning
  • 相关文献

参考文献3

二级参考文献10

共引文献5

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部