摘要
传统的服装动画制作方法依托于专业的布料仿真平台,需要美工或动画师编辑,时间和人力成本通常很高.通过半自动化的方法进行服装动画制作,只需要根据输入的高层参数,即可快速生成逼真的服装动画,不仅可以降低服装动画制作的技术门槛和创作成本,也有利于动画师更多地关注动画内容本身,进而得到丰富的动画效果.基于此,提出了一种基于变分自编码器的服装变形预测方法.首先,选取涵盖多种姿态的人体运动序列构建人体模型,并通过物理仿真的方式生成服装变形数据;其次,利用变分自编码器学习服装变形数据在隐空间上的概率分布模型,并引入拉普拉斯坐标变换保证生成服装的褶皱细节;然后,进一步在隐空间概率分布上引入约束条件控制服装的生成效果;最后,通过穿透修正获取逼真的服装变形效果.在AMASS数据集上基于不同体型、不同运动序列的数据开展实验,并从视觉预测效果和顶点偏移误差2个角度分析实验结果,结果表明,所提方法具有较小的服装重建误差,且可生成满足姿态、体型和时序等多种约束的服装变形效果,从而辅助动画师进行理想服装变形效果生成.
Traditional garment animation workflow relies on the professional clothing simulator,which requires manual editing of artists or animators.There is no doubt that such a process is time-consuming and laborious.Synthesizing garment dynamics according to the input high-level parameters in a semi-automatic way not only helps dismiss the domain gap between inspiration and technical implementation,but also enables artists to focus on the authoring of animating contents.To that end,a variational auto-encoder-based garment animation synthesis method is presented.Firstly,a set of motion sequences composed of different poses are sampled to generate the human body dataset.Secondly,a variational auto-encoder network is constructed to learn the probabilistic distribution of clothing deformation from garment motions under different pose variations.Besides,a mesh Laplacian term on the loss function is introduced to preserve wrinkle details of the synthesized garments.After that,constraints on the latent space are imposed to control the garment shape to be generated.Finally,a refinement process is employed to resolve the penetration between the body surface and garment mesh,obtaining realistic clothing deformations.Proposed method is qualitatively and quantitatively evaluated on the AMASS dataset from different aspects:body motion/shape-driven garment synthesis,garment animation authoring.The experimental results demonstrate that proposed workflow is able to produce visually realistic garments without noticeable artifacts.Proposed method can produce temporally-consistent garment dynamics with shape and pose variations,which assists artists in authoring the desired clothing deformations.
作者
石敏
冯文科
魏育坤
毛天露
朱登明
王兆其
Shi Min;Feng Wenke;Wei Yukun;Mao Tianlu;Zhu Dengming;Wang Zhaoqi(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206;Prospective Research Laboratory,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2022年第8期1160-1171,共12页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61972379)。
关键词
变分自编码器
服装动画
服装变形预测
拉普拉斯变换
穿透修正
variational auto-encoder
clothing animation
garment deformation prediction
Laplace transform
penetration removal