期刊文献+

基于混沌和改进广义Feistel结构的轻量级密码算法 被引量:1

Lightweight Cipher Algorithm Based on Chaos and Improved Generalized Feistel Structure
下载PDF
导出
摘要 随着物联网的快速发展,无线网络传感器、射频识别标签以及工业控制器等被广泛部署,这些资源受限设备的安全同样需要保障,而传统的密码算法需要消耗大量的资源,不适用于资源受限设备。针对以上问题,文章提出一种轻量级分组密码。S盒是分组密码的关键性组件,通过应用两个混沌映射和跳跃蜘蛛优化算法构成的多目标优化算法生成并优化得到非线性度平均值为110,线性逼近概率为0.1172,差分逼近概率为0.0391的S盒。文章对广义Feistel结构进行相应改进,改进后的结构一次能够处理所有的中间状态,不存在未处理的分支,并结合构造的S盒、密钥扩展算法等,组成分组长度为64位、种子密钥长度为80位、迭代轮数为12轮的轻量级分组密码算法。该算法的等效门电路数量符合轻量级的标准,并且有良好的性能。 With the rapid development of the Internet of Things,wireless network sensors,radio frequency identification tags,and industrial controllers are widely deployed.The security of these limited devices also needs to be guaranteed,and the traditional cryptographic algorithm needs to consume a lot of resources.To solve these problems,a new lightweight block cipher was proposed.S-box was a key component in block cipher.By applying two chaotic map,a S-box with average nonlinearity of 110,linear approximation probability of 0.1172 and differential approximation probability of 0.0391 was obtained.The generalized Feistel structure was correspondingly improved and the improved structure could handle all intermediate states at one time without unprocessed branches.Combined with the constructed S-box,the improved structure and key expansion algorithm,a new lightweight block cipher algorithm with a packet length of 64 bit,a seed key length of 80 bit and 12iteration rounds was formed.The algorithm has good performance and the gate equivalent number of that meets the lightweight standard.
作者 佟晓筠 苏煜粤 张淼 王翥 TONG Xiaojun;SU Yuyue;ZHANG Miao;WANG Zhu(Department of Computer Science and Technology,Harbin Institute of Technology at Weihai,Weihai 264209,China;Department of Information science and Engineering,Harbin Institute of Technology at Weihai,Weihai 264209,China)
出处 《信息网络安全》 CSCD 北大核心 2022年第8期8-18,共11页 Netinfo Security
基金 国家自然科学基金[61902091] 山东省自然科学基金[ZR2019MF054]。
关键词 轻量级分组密码 S盒 广义Feistel结构 混沌映射 跳跃蜘蛛优化算法 lightweight block cipher S-box generalized Feistel structure chaotic map jumping spiders optimization algorithm
  • 相关文献

参考文献5

二级参考文献13

共引文献10

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部